2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Построить приближение к решению д.у.
Сообщение23.02.2009, 18:29 
Для уравнения $y'=x-y^2$ c начальным условием $y(0)=0$ построить третье приближение к решению и оценить его ошибку при $0\leqslant x \leqslant 0,5$

Строим приближения:
$y_{n+1}=y_0+ \int\limits_{x_0}^{x} f(s,y_n)ds$, где n - целое.

$x_0=0$ $y_0=0$

$y_1= \int\limits_{0}^{x} sds =  x^2/2$

$y_2= \int\limits_{0}^{x} (s-s^4/4)ds =  x^2/2-x^5/20$

Последнее и будет третьим приближением?

А вот что дальше делать не очень ясно. В задачнике (Филиппов. Дифференциальные уравнения) есть указание:
оценить остаток ряда, сходимость которого доказывается в теореме существования решения.

Подскажите пожалуйста...

 
 
 
 
Сообщение23.02.2009, 18:32 
G_Ray в сообщении #188937 писал(а):
В задачнике (Филиппов. Дифференциальные уравнения) есть указание:

оценить остаток ряда, сходимость которого доказывается в теореме существования решения.
Странное указание, так как теорема существования решения доказывается очень по-разному. :roll:

 
 
 
 
Сообщение23.02.2009, 18:38 
Цитата:
Странное указание, так как теорема существования решения доказывается очень по-разному.

Ах да, посмотрел ещё разок, там ссылки даны на литературу, которой не имею.
Можно это решить, как-нибудь по-другому?

 
 
 
 
Сообщение23.02.2009, 22:06 
Нашел рекомендуемую литературу. Существование там доказывается методом последовательных приближений. Что впринципе не удивительно. :)
Там доказывается сходимсоть ряда:

$y_0+ \sum\limits_{n=1}^{\infty} (y_n-y_{n-1})$

 
 
 
 
Сообщение23.02.2009, 22:24 
Так, ну на первый взгляд у Вас решение получается в виде ряда Тейлора. А остаточный член ряда Тейлора известно как оценивать. Ну типа в форме Лагранжа там, итп :roll:

 
 
 
 
Сообщение25.02.2009, 00:21 
Нужно воспользоваться теоремой Пикара и оценками, полученными в ходе ее доказательства (см. например Н.М. Матвеев, Методы интегрирования обыкновенных дифференциальных уравнений). По теореме Пикара если $f$ непрерывна в области $|x-x_0|\leq a$, $|y-y_0| \leq b$, причем в этой области $|f(x,y)|\leq M$, $|f(x,y_1) - f(x,y_2)|\leq L|y_1 - y_2|$, то решение уравнения $\frac{dy}{dx}=f(x,y)$ $y(x)$ с начальными данными $y(x_0) = y_0$ существует и единственно при $|x-x_0|\leq h, h = \min\{a, \frac{b}{M}\}$, причем $|y(x) - y_0|\leq b$.

В процессе доказательства решение строится в виде суммы ряда $y(x) = y_0 + y_1(x) - y_0 + y_2(x)-y_1(x)+y_3(x) - y_2(x) + ...$, где $y_n$ - приближения, которые вы строите в процессе вашего решения. Для доказательства его сходимости выводится оценка
$| y_{n} - y_{n-1}| \leq M (2L)^{n-1}\frac{|x-x_0|^n}{n!}$.

Откуда получаем оценку для $n$-го приближения:
$$y(x) = y_{n}(x) + y_{n+1}(x) - y_{n}(x) + y_{n+2} - y_{n+1} +...$$,
$$|y(x)-y_n(x)| = |y_{n+1}(x) - y_{n}(x) + y_{n+2} - y_{n+1} +...\leq |y_{n+1}(x) - y_{n}(x)| + |y_{n+2} - y_{n+1}| +...\leq$$
$$\leq  M (2L)^{n}\frac{|x-x_0|^{n+1}}{(n+1)!} + M (2L)^{n+1}\frac{|x-x_0|^{n+2}}{(n+2)!} + ... \leq\frac{M}{2L}\left(\frac{(2Lh)^{n+1}}{(n+1)!} +  \frac{(2Lh)^{n+2}}{(n+2)!} +...\right) = $$
$$= \frac{M}{2L}\left(e^{2Lh} - \left(1 + \frac{2Lh}{1!} + \frac{(2Lh)^2}{2!} + ... + \frac{(2Lh)^n}{n!}\right)\right)$$.

В вашем случае $x_0 = 0$, $y_0 = 0$, $a = \frac{1}{2}$. Очевидно, $L=2b$, $M=\frac{1}{2} + b^2$. Нужно подобрать $b$ так, чтобы решение существовало на $|x|\leq \frac{1}{2}$, т.е. $\min\{a, \frac{b}{M}\} \geq \frac{1}{2}$ и воспользоваться оценкой выше.

 
 
 
 
Сообщение28.02.2009, 21:08 
AD, DM_13 - спасибо вам, все - задача решена. Я просто брал грубую оценку, поэтому не сходилось с ответом.


Можно ещё проконсультироваться?
$y'^2+x=2y$
Как бы красиво разрешить относительно производной? посоетуйте пожалуйста...

 
 
 
 
Сообщение28.02.2009, 21:17 
Аватара пользователя
Что значит "красиво"? То, что рекомендует школьная алгебра, Вас не устраивает?

 
 
 
 
Сообщение28.02.2009, 21:22 
Ну как бы это сказать, дальше тогда что делать?

$y'=(2y-x)^{1/2}$
Я туплю что-то...

 
 
 
 
Сообщение28.02.2009, 22:27 
Аватара пользователя
$y'=\pm\sqrt{2y-x}$

Это стандартное уравнение типа $y'=f(ax+by+c)$. При $b\neq 0$ обычно сводится к уравнению с разделяющимися переменными введением новой неизвестной функции $z=ax+by+c$. В данном случае, может быть, лучше $z=\pm\sqrt{2y-x}$.

 
 
 
 
Сообщение28.02.2009, 22:48 
так ведь автора-то интересовать вроде как должно не точное решение, а приближения к нему (да ещё и при условии, что точное решение предполагается неизвестным).

Меня-то это как-то не увлекает, но если кого увлекает -- то желательно иметь в виду.

 
 
 
 
Сообщение28.02.2009, 22:52 
G_Ray, у Вас уравнение Лагранжа, т.е. уравнение вида $y=\varphi(y')x+\psi(y')$.

Как решать уравнения такого типа, написано на стр. 25-26 http://u-pereslavl.botik.ru/~trushkov/ode/ode.pdf

 
 
 
 
Сообщение28.02.2009, 22:59 
Аватара пользователя
ewert в сообщении #190520 писал(а):
так ведь автора-то интересовать вроде как должно не точное решение, а приближения к нему


А-а-а... Я не посмотрел, у него там, оказывается, метод Пикара. Уж не знаю, насколько "приятно" будет применять его к уравнению $z'=1-\frac 1{2z}$, не говоря уж об исходном $y'=\pm\sqrt{2y-x}$.

 
 
 
 
Сообщение28.02.2009, 23:15 
Ежели начальная точка особая, то теорему Пикара (я всегда путаюсь в терминологии, но вроде её) применять никакого смысла нет. Ибо при особости начальной точки решение, может, и гарантировано -- однако же заведомо не обязано быть единственным, а значит -- не может быть и никаких абсолютных оценок погрешностей, поскольку таковые оценки гарантировали бы и единственность.

Так уж природа устроена.

 
 
 [ Сообщений: 14 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group