2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 f'(z)<>0
Сообщение17.02.2009, 21:02 
Let $f: G\rightarrow \mathbb{C}$ is analytic and one-to-one, where $G$ is open subset of $\mathbb{C}$. Prove that $\forall z\in G$ is $f'(z)\neq 0$.

Posted after 4 minutes 18 seconds:

I have a hint that if $n = ord(g;z_0) > 0$ for some $z_0\in G$, then there is an open neighbourhood $z_0\in U\subset G$ and an analytic function $h: U\to \mathbb C$ such that $g(z) = h(z)^n$ for all $z\in U$.

But, problem is that I don't know why then exists such analytic function, and, after all what to do with it. Sorry...

Спасибо.

 
 
 
 
Сообщение17.02.2009, 22:35 
Suppose $f'(z_0)=0$ and consider the Taylor series at $z_0$.

 
 
 [ Сообщений: 2 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group