2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.



Начать новую тему Ответить на тему
 
 Опорная гиперплоскость для единичного шара
Сообщение15.02.2009, 02:25 
Заслуженный участник


05/06/08
1097
Решал задачки из Кириллова-Гвишиани, и №235 вызвал некоторые затруднения.
Цитата:
Гиперплоскость $P$ называется опорной для выпуклого множества $K$ нормированного пространства $L$, если имеет с ним общую точку и всё $K$ расположено по одну сторону от $P$. Доказать, что множество опорных гиперплоскостей для единичного шара $D$ в $L$ естественно нумеруется точками единичной сферы $S$ из $L'$.


Собственно, по поводу "естественно нумеруется" уже появился вопрос, но, вроде бы, под этим подрузумевается то, что подмножеством множества опорных гиперплоскостей для $D$ будет $S$ ( ну, точнее, не само $S$ ).

Идеи:
Норма функционала $f$ обратна расстоянию от $0$ до гиперплоскости $\{x \in L: f(x) = 1 \}$.
Поэтому каждая из гиперплоскостей, задаваемых для некоторого $f \in S \subset L'$ уравнением $\{x \in L: f(x) = 1\}$, будет находиться на единичном расстоянии от $0 \in L$.

Но ведь отсюда не следует вроде бы, что $\{x: f(x) = 1\} \cap D \neq \Lambda$, хотя гиперплоскости эти ( т.к. $f$ ограничен ) и будут замкнуты?

Например, будь $L$ гильбертовым ( что еще проще - конечномерным ), то, да, тогда в $\{x \in L: f(x) = 1\}$ была бы ближайшая точка к $0 \in L$, она бы принадлежала $D$.

В каком направлении подумать?

P.S. Что смущает - если $K$ вообще открыто, как тогда может быть общая точка такая, что $K$ остается по одну сторону от гиперплоскости?

 Профиль  
                  
 
 
Сообщение16.02.2009, 19:05 
Заслуженный участник


05/06/08
1097
:?:
Неужели неправильная задача? :?

 Профиль  
                  
 
 
Сообщение16.02.2009, 19:39 
Экс-модератор


17/06/06
5004
id в сообщении #186381 писал(а):
P.S. Что смущает - если $K$ вообще открыто, как тогда может быть общая точка такая, что $K$ остается по одну сторону от гиперплоскости?
Согласен с Вами, поэтому думаю, что $D$ - это все-таки замкнутый шар.

Вообще мне утверждение задачи совсем не нравится. Даже если в $\mathbb{R}^2$ ввести норму $\|x\|_1=|x_1|+|x_2|$, то не понятно, как естественно занумеровать опорные плоскости шара-ромбика его же граничными точками.

Добавлено спустя 1 минуту 33 секунды:

Где-то я слышал, что в теореме Хана-Банаха продолжение всегда единственно $\Leftrightarrow$ сфера не содержит отрезков. :roll:

Добавлено спустя 1 минуту 43 секунды:

Хотя может быть и нормально ... подумать надо еще.

 Профиль  
                  
 
 
Сообщение16.02.2009, 19:41 
Заслуженный участник


05/06/08
1097
Надо полагать, что действительно замкнутый ( хотя в условии этого ясно не оговорено ); но даже если так - неясно как-то, откуда же взять в этой самой гиперплоскости ближайшую точку.

Странная задача.

 Профиль  
                  
 
 
Сообщение16.02.2009, 20:14 
Экс-модератор


17/06/06
5004
id в сообщении #186381 писал(а):
$\{x: f(x) = 1\} \cap D \neq \Lambda$
Поясните, пожалуйста, что такое $\Lambda$. :?

 Профиль  
                  
 
 
Сообщение16.02.2009, 20:34 
Заслуженный участник


05/06/08
1097
AD
Пустое множество. :)
Обозначение для $0$ уже использовал, как будет "перечеркнутый $0$" не помню... Но такое тоже используется иногда.

То есть да, $0$ будет предельной точкой для $D - H$, где $H$ - гиперплоскость, а $D$ - единичный шар, причем оба замкнуты.
Но известно лишь, что
Цитата:
Если $A, B$ - замкнутые множества и одно из них компактно, то $A+B$ замкнуто.

 Профиль  
                  
 
 
Сообщение16.02.2009, 20:58 
Экс-модератор


17/06/06
5004
id в сообщении #186381 писал(а):
Но ведь отсюда не следует вроде бы, что $\{x: f(x) = 1\} \cap D \neq \Lambda$, хотя гиперплоскости эти ( т.к. $f$ ограничен ) и будут замкнуты?
Да, вроде бы норма не всегда достигается. Даже в хороших пространствах.

P.S. $\emptyset$, $\varnothing$. Чего-то я $\Lambda$ не встречал, если честно :)

 Профиль  
                  
 
 
Сообщение16.02.2009, 21:02 
Заслуженный участник


05/06/08
1097
Цитата:
Да, вроде бы норма не всегда достигается. Даже в хороших пространствах.


Вот это как раз и смущает даже в прозрачном участке задачи. :? Конечно, для гильбертовых будет ближайшая точка, но в задачнике вроде бы ни о каких гильбертовых и речи нет.

Cпасибо. :)

 Профиль  
                  
 
 
Сообщение16.02.2009, 21:04 
Экс-модератор


17/06/06
5004
Только что прочитал: нормированное пространство рефлексивно $\Leftrightarrow$ у всех функционалов норма достигается :)

 Профиль  
                  
 
 
Сообщение16.02.2009, 21:33 
Заслуженный участник


05/06/08
1097
Действительно, спасибо, очень любопытный критерий.

Но, похоже, этим решение задачи и ограничивается. В том же Хелемском этот критерий дается со следующей припиской:
Цитата:
Если бы речь шла о действительном линейном пространстве, подобное свойство означало бы, что каждая опорная гиперплоскость единичного шара имеет с ним хотя бы одну общую точку.

 Профиль  
                  
 
 
Сообщение16.02.2009, 22:16 
Заслуженный участник


11/05/08
32166
странная какая-то задачка. Во-первых, сам вопрос поставлен совершенно безобразно. Вот если бы типа "предъявите некую "естественную" биекцию между гиперплоскостями и точками на единичной сопряжённой сфере" -- то это было бы хоть сколько-то осмысленно.

Но и это совершенно не прокатит, коли норма не строга.

Но даже и для строгой нормы возможны ньюансы в уголках...

Короче, совершенно непонятно, чего аффтары имели в виду (хотя сами по себе аффтары -- вполне уважаемы).

 Профиль  
                  
 
 
Сообщение17.02.2009, 16:25 
Заслуженный участник
Аватара пользователя


30/01/09
7149
Мне кажется, что определение опорной гиперплоскости у Кириллова и Гвишиани не совсем корректное. Почему она должна иметь с выпуклым множеством общую точку? Может попробовать ввести другие определения? Допустим, опорная гиперплоскость определяется элементом сопряжённого пространства, который принимает значение на данном множестве меньше или равным единице (извините, что словами - ТЕХ ещё не освоил), причём среди коллинеарных векторов, обладающих данным свойством, надо выбрать максимальный (это определение только для единичного шара). Тогда очевидно, что этот элемент имеет норму 1. Правда, сейчас посмотрел учебник по оптимизации. Там тоже в определении опорной гиперплоскости присутствует общая точка. Правда там всё в конечномерном пространстве. Может кто посмотрит определение опорной гиперплоскости по другим книгам?

Вообще, видел такую теорему (как следствие теоремы Хана-Банаха), что в нормированном пространстве замкнутый единичный шар и любую точку вне его можно отделить гиперплоскостью. Может она тут поможет.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 12 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group