2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Предел функции(из Кудрявцева)
Сообщение13.01.2009, 15:26 
Добрый день!
Банально прошу вас помочь решить или решить лимит из первого тома сборников задач Кудрявцева 9.26.6)
$$\lim\limits_{x\to\infty}\frac{\sqrt[3]{1+\frac4x}-\sqrt[4]{1+\frac3x}}{1-\sqrt[5]{1-\frac5x}}$$

Ответ: 7/12.

 
 
 
 
Сообщение13.01.2009, 16:13 
Попробуйте использовать эквивалентные бесконечно малые:
$(1+x)^{\alpha}-1 \sim \alpha x$

 
 
 
 
Сообщение13.01.2009, 16:18 
а можно и пролопиталить -- тоже сразу поможет.

"Ручная" альтернатива: добавить и вычесть в числителе единичку, разбить на две дроби и в каждой домножить на сопряжённые. Только это морока, особенно для пятой степени.

А больше -- наверное, и никак.

 
 
 
 
Сообщение13.01.2009, 16:23 
Sonic86, спасибо даже и не думал об этой эквивалентности.

ewert, забыл упомянуть, этот пример ДОЛЖЕН решаться и без теоремы Лопиталя.

Всё уже решил. Sonic86 ещё рас большое спасибо!!!

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group