Fsb4000 писал(а):
2. а)делимая абелева группа не имеет максимальных подгрупп
Думаю, хватит уже полных решений, да? Модераторы ведь зароют за то, что я Вам уже две задачи полностью расписал!!! Посему, чтобы их не злить, ограничимся идеями.
Ниже мы везде считаем, что натуральный ряд начинается с единицы.
Предположите, что
--- делимая группа и
--- максимальная подгруппа в
. Рассмотрите
Докажите, что
--- подгруппа в
, содержащая
. В силу максимальности
возможны только два случая:
или
.
Рассмотрите каждый из случаев по отдельности и придите к противоречию. В случае
возьмите
и докажите, что
есть собственная подгруппа в
, содержащая
и не равная
. В случае
зафиксируйте
и
, такие что
и покажите, что
является собственной подгруппой в
, содержащей
и не совпадающей с
.
Добавлено спустя 10 минут 17 секунд:Fsb4000 писал(а):
б) привести примеры делимых абелевых групп,могут ли они быть конечными?
Самый простой пример --- это
. Ну или
,
--- что Вам больше нравится.
Насчёт конечности... конечно же делимая группа не может быть конечной (за исключением тривиального случая, когда группа состоит из одного нуля). Предположите, что
--- конечная группа. Докажите, что
для некоторого
и всех
. Потом возьмите такое
и узрите, что уравнение
неразрешимо при ненулевом
.
Добавлено спустя 9 минут 56 секунд:Fsb4000 писал(а):
4. Построить пример коммутативного и ассоциативного кольца R (
)(
), в котором нет максимальных идеалов.
Возьмите абелеву группу
. Покажите, что она делимая. Умножение задайте следующим образом:
Покажите, что для
выполняется всё, что надо.
Упс!.. А ведь ошибся я тут, похоже. Максимальный идеал есть, он равен
. Н-да, надо ещё подумать... Но не буду я сейчас ничего думать, а поеду лучше на работу, в универ. Надо же Вам хоть что-то для самостоятельного решения оставить!
Добавлено спустя 10 минут 29 секунд:Fsb4000 писал(а):
1.Доказать что произвольное кольцо с единицей содержит максимальный идеал.
по решению: 1. По лемме Цорна выберем минимальный положительный элемент, он и будет порождающим идеал.
Ну... не знаю, что Вы там за минимальный положительный элемент такой придумали. По моему, это полная чушь. Какой Вы там в произвольном кольце "положительный элемент" найдёте, если в этом кольце порядок не задан и непонятно, что там "положительное", а что "отрицательное"...
Но насчёт того, что надо применять лемму Цорна --- это правильная идея. Только применять её надо к множеству собственных идеалов кольца. Берёте это множество, упорядочиваете его обычным отношением включения и показываете, что данное упорядочивание индуктивно. Потом, по лемме Цорна, заключаете, что в этом множестве есть максимальный элемент. Этот максимальный элемент и будет максимальным идеалом!
Когда будете показывать индуктивность, то в качестве верхней грани для цепи собственных идеалов берите их объединение. Оно тоже будет идеалом, а собственным оно окажется потому, что единица в него не войдёт. И вот, кстати, в кольце без единицы доказательство через лемму Цорна не проходит, а всё дело именно в этом моменте
Добавлено спустя 34 минуты 54 секунды:Alexiii писал(а):
Любое кольцо по определению имеет единицу,так что немыслимо писать "кольцо с единицей". Любое кольцо само по себе идеал кольца и притом,очевидно,максимальный...
Нас учили, что наличие единицы в определение кольца не входит. Так что произвольное кольцо не обязано содержать единицу, а если она в нём всё-таки есть, то сказать про такое кольцо, что оно является "кольцом с единицей", более чем уместно!
Думаю, что порывшись в библиотеке, я найду кучу весьма солидных учебников по алгебре, которые подтверждают мою точку зрения. И в матэнциклопедии написано, что кольцо не обязано единицу иметь. Так что всё в условии задачи у автора темы правильно, нечего на него гнать!
Максимальным идеалом кольца,
по определению, называется идеал, максимальный по включению
среди собственных идеалов. Об этом не то что во многих, а просто
во всех учебниках по алгебре написано, в которых теория колец присутствует. Так что насчёт максимальности у Вас ещё один гон совершенно не по теме!
Добавлено спустя 6 минут 5 секунд:Alexiii писал(а):
Вообще,как я понял из ваших комментов, "кольца с единицией" пишут только для того,чтобы исключить одноэлементный случай.
Совершенно неправильно поняли! "Кольца с единицей" пишут для того, чтобы обозначить наличие единицы в кольце
А колец без единицы полно. К примеру, множество чётных целых чисел с обычными сложением и умножением образуют такое кольцо.