Да нет, наверное, ошибок. Укажу лишь непосредственные следствия из этой формулы, которые являются общеизвестными формулами обвертывающих рядов некоторых констант:

- дзета функция

- постоянная Эйлера
При индуктивном выводе этой формулы действительно использовались примерно указанные Вами закономерности. Но дело в том, что в окончательном виде данная формула - это лишь догадка, используюшая формулу Бернулли для положительных степеней - проверяем для первого - сходится, для второго - тоже и т.д. - делаем индуктивный вывод, но ничего этим не доказываем. Математическая индукция ведет к таким пугающим выражения, что при попытке доказать - руки опускаются. Может как-то использовать формулу Эйлера-Маклорена?