2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 актуальная бесконечность
Сообщение10.03.2006, 19:46 
Аватара пользователя
Я математик, мягко говоря, слабенький. Не могли бы те, кто знают получше, рассказать или подсоветовать простенькую, доступным языком написанную литературу, описывающую свойства бесконечности. Причем интересуют меня свойства не потенциальной, а актуальной бесконечности. В Энциклопедическом словаре прочитал, например, что $+\infty$ и $-\infty$ включают как "несобственные элементы системы действительных чисел". Что значит "несобственные", почему их включают именно в действительные числа? Каковы свойства $\infty$, включаемого в множество комплексных чисел? Кроме основных, конечно, которые я могу тут же в словаре подчерпнуть, вроде:
$\infty+a=\infty$, если $a$ конечное
$\infty+\infty$ не имеет смысла
$\infty\cdot a=\infty$ при $a\neq0$
$\infty\cdot 0$ не имеет смысла

 
 
 
 
Сообщение10.03.2006, 23:09 
Аватара пользователя
На сколько я помню про несобственные числа говорили в матане и это относилось только к пределам и те правила которые вы написалли выражаются свойсвами приделов.

А есле вы будете смотреть на прямую как на топлогическое пространство то ни кто не мешает вам дабивать некую точку бесконечность и определить ее окрестности.

 
 
 
 
Сообщение10.03.2006, 23:46 
Аватара пользователя
Да ничего особенного тут нет. Просто для удобства (в основном - теории пределов) к множеству действительных чисел добавляются бесконечности. Это делается двумя способами.
1) Добавляется один элемент $\infty$, который называется проективной бесконечностью. Его $\varepsilon$-окрестности ($\varepsilon>0$) определяются как $O_{\varepsilon}(\infty)=\{x\in\mathbb R:|x|>\frac{1}{\varepsilon}\}\cup\{\infty\}$. С топологической точки зрения числовая прямая с добавленным элементом $\infty$ выглядит как окружность. Описанная окрестность на этой окружности выглядит как обычный интервал. Какие-либо неравенства для символа $\infty$ не определяются.
2) Добавляются два элемента $-\infty$ и $+\infty$, которые называются аффинными бесконечностями. Их $\varepsilon$-окрестности определяются как $O_{\varepsilon}(-\infty)=\{x\in\mathbb R:x<-\frac{1}{\varepsilon}\}\cup\{-\infty\}$ и $O_{\varepsilon}(+\infty)=\{x\in\mathbb R:x>\frac{1}{\varepsilon}\}\cup\{+\infty\}$. Числовая прямая с этими элементами превращается как бы в отрезок (с концевыми точками!). Естественно считать, что $-\infty<x<+\infty$ для всех $x\in\mathbb R$. Тогда $O_{\varepsilon}(-\infty)=[-\infty,-\frac{1}{\varepsilon})$ и $O_{\varepsilon}(+\infty)=(\frac{1}{\varepsilon},+\infty]$. В литературе довольно часто вместо $+\infty$ пишут просто $\infty$, хотя это можно рассматривать как неточность.
Бесконечные элементы называют несобственными, поскольку числами они не являются. Их арифметические свойства отражают свойства пределов. В полном объёме арифметические операции на них не переносятся, а в тех случаях, когда всё-таки переносятся, свойства поля действительных чисел на них не распространяются.

 
 
 
 Где находится линия горизонта? ;-)
Сообщение11.03.2006, 01:34 
Добавлю ещё зрительное описание.

Человек видит не мир, а изображение мира на сетчатке. Сильно идеализируя, будем говорить о центральной проекции на сферу. Если сфера находится над горизонтальной прямой, то в проекции получится открытая полуокружность. Две граничные точки на сетчатке - это и есть бесконечности (плюс и минус). На прямой соответствующих точек нет, а жаль (хочется компактности, абсолютного максимума и абсолютного минимума). Приходится ввести формальные значки и перенести на них те топологические и порядковые свойства, которыми обладают граничные точки на полуокружности.

При взгляде сверху на плоскость появляется целая куча бесконечностей: северная, западная, юго-восточная и т. д. Все вместе эти бесконечности образуют линию горизонта. (Так где же находится линия горизонта? :wink:)

Одноточечная бесконечность - это зрачок существа, которого зовут Колобок Римана. Этот Колобок внутри пустой, всю внутреннюю поверхность занимает сетчатка, а на всей шкуре лишь одно одноточечное отверстие (зрачок), через которое и входит свет.

Интересно, как этот Колобок относится к волновой природе света (может, photon знает ответ :wink:).

 
 
 
 
Сообщение11.03.2006, 08:45 
таблицу для работы с бесконечностями можно посмотреть в книгах Натансон И.П. "Теория функц. веществ. переменной", глава IV, §1
П. Халмош "Теория меры", 1953, 7 стр.

Кстати, Егор
а как вы представляете себе "видеть мир" без сетчатки?

 
 
 
 Актуальная VS Потенциальная
Сообщение11.03.2006, 10:41 
Аватара пользователя
Someone писал(а):
Да ничего особенного тут нет. Просто для удобства (в основном - теории пределов) к множеству действительных чисел добавляются бесконечности. Это делается двумя способами.

Если бесконечность определяется как предел, то это потенциальная, а не актуальная бесконечность, если я правильно понял. А меня почему-то заинтересовала актуальная бесконечность. В том же Энциклопедическом словаре в разделе "Актуальная бесконечность" я читаю, что если множество натуральных чисел задается как $n_1=1$,$n_{i+1}=n_i+1$, то в этом множестве $+\infty$ рассматривается как потенциальная бесконечность, если же мы рассматриваем множество натуральных чисел как некую данность, независимо от механизма ее образования, то в этом случае $+\infty$ уже может быть включена как актуальная бесконечность. Хотя как правило рассматривают именно первый случай, и тогда актуальные $+\infty$ и $-\infty$ включаются только во множество действительных чисел - для них можно использовать операции сравнения, а $\infty$ не включается в действительные числа и включается только во множество комплексных чисел. Странно получается, что в зависимости от механизма образования множества, а не от самого множества его элементы $\pm\infty$ могут быть рассмотрены как актуальные и как потенциальные. А какая математикам разница, является бесконечность актуальной или потенциальной?

 
 
 
 Re: Актальная VS Потенциальная
Сообщение11.03.2006, 10:56 
Аватара пользователя
photon писал(а):
Если бесконечность определяется как предел, то это потенциальная, а не актуальная бесконечность, если я правильно понял.


В математике, вообще то, нет понятий актуальной или потенциальной бесконечности, это скорее философия. И я ничего не определял как предел. Я просто написал, что вводятся эти элементы, прежде всего, для удобства теории пределов.

photon писал(а):
... множество натуральных чисел ... $+\infty$


Обычно для множества натуральных чисел пишут $\infty$, поскольку $-\infty$ к натуральным числам явно отношения не имеет, а $+\infty$ и $\infty$ неразличимы.

photon писал(а):
$+\infty$ и $-\infty$ включаются только во множество действительных чисел - для них можно использовать операции сравнения, а $\infty$ не включается в действительные числа и включается только во множество комплексных чисел.


Да нет, оба способа используются, хотя аффинные бесконечности действительно встречаются чаще. Одно время даже стандарт на арифметику с плавающей точкой предусматривал оба варианта.

photon писал(а):
А какая математикам разница, является бесконечность актуальной или потенциальной?


Абсолютно никакой.

 
 
 
 спасибо
Сообщение11.03.2006, 11:01 
Аватара пользователя
Спасибо за некоторые разъяснения

 
 
 
 Re: Актальная VS Потенциальная
Сообщение11.03.2006, 11:02 
Аватара пользователя
photon писал(а):
Если бесконечность определяется как предел, то это потенциальная, а не актуальная бесконечность, если я правильно понял.

А какая математикам разница, является бесконечность актуальной или потенциальной?


Я бы объяснил это так. Потенциальная бесконечность - это не математический объект, а просто некоторое сокращенное обозначение, чтобы каждый раз не писать длинного определения. Мы просто сокращаем и вместо длинной фразы "для любого числа T>0 существует такой номер N(T), что для всех номеров n>N(T) выполнено x(n)>T" договариваемся писать кратко $x(n)\to +\infty$. Но все равно всегда помним, что это лишь сокращенное обозначение, упрощающее изложение, а подразумевается всегда указанная длинная фраза, в которой уже никакой бесконечности нет.

Во случае актуальной бесконечности мы вводим новый математический объект, называем его бесконечностью и наделяем его определенными свойствами, чтобы с этим объектом можно было работать. Например, к существующему топологическому пространству добавляем новую точку. Тогда нужно определить, что такое окрестности данной точки и как они связаны с элементами существующего топологического пространства, что и делается так, как написал Someone.

 
 
 
 to zkutch
Сообщение11.03.2006, 11:39 
zkutch писал(а):
Кстати, Егор
а как вы представляете себе "видеть мир" без сетчатки?

Не понял, откуда возник вопрос. В данной выше "зрительной интерпретации бесконечности" сетчатка есть. Чтобы увидеть всю плоскость и получить семейство бесконечностей в виде линии горизонта, идеальный глаз смотрит на плоскость сверху. Роговица глаза - нижняя полусфера, сетчатка - верхняя полусфера (вместе с экватором). Горизонтом будет экватор глаза.

О потенциальной и актуальной бесконечностях. Значок $\infty$ вместе с системой окрестностей - это потенциальная бесконечность. Актуальная бесконечность - это представление о бесконечном множестве как о совокупности одновременно существующих и чётко отделённых друг от друга объектов. В математике это означает свободное применение к бесконечным множествам классической логики - снятия двойного отрицания, законов де Моргана и т. п. Характерный пример работы с актуальной бесконечностью - "построение" сходящейся подпоследовательности в теореме Больцано-Вейерштрасса: "если на сегменте [0;1/2] лежит бесконечное число элементов последовательности, то перейдём к этому сегменту, иначе перейдём к сегменту [1/2;1]". Именно такую актуальную бесконечность не признают конструктивисты.

 
 
 
 Re: to zkutch
Сообщение11.03.2006, 12:14 
Егор писал(а):
Не понял, откуда возник вопрос.... идеальный глаз смотрит на плоскость сверху. Роговица глаза - нижняя полусфера, сетчатка - верхняя полусфера (вместе с экватором). Горизонтом будет экватор глаза.


вот объяснение я и хотел услышать. Или в вашем идеальном глазе, наверное, есть еще и точка откуда ведется наблюдение и подходим к стереографической проекции (разве не она основная ваша задумка?). Или "видит" соответствующая поверхность сферы (?). И сам глаз находится "сверху"(?). А может я неправильно представил ваше видение. Вопрос же я задал в надежде услышать новую идею, вообще отличную от стереографической.


Касательно самого понятия актуальной или потенциальной бесконечности позвольте предложить еще следующее соображение:
насколько я знаю принимать потенциальную бесконечность, как возможность построения следующего шага, никто и не оспаривал (буду рад если кто-нибудь просветит в обратном). Вся буза связана с актуальной бесконечностью.
Беря например множество натуральных чисел и говоря, что элемент принадлежит ему, я представляю, что оба объекта существуют. Таким образом существует актуальная бесконечность означает существует, например, множество натуральных чисел. Если бы этого не было и мы допускали бы только существования потенциальной бесконечности, то элемент принадлежит N надо было бы понимать как возможность определенного построения, вроде того что расшифровал PAV.
Еще пример - говоря, что две прямые паралельны на плоскости я понимаю что они обе существуют и не существует точка принадлежащая обоим. Если бы принималась только потенциальная бесконечность, то надо было-бы говорить, что отрезки лежат на паралельных прямых это всего лишь жаргон - понимать надо так, что продолжая отрезки на произвольную длинну не возникнет точка пересечения. Если не ошибась, у Евклида именно такое понимание.
Резюмируя - разность между потенциальной и актуальной бесконечностью уже в том как понимать существует, принадлежит и т.д.

 
 
 
 
Сообщение11.03.2006, 12:51 
Аватара пользователя
Есть книжка, называется Успенский "Что такое нестандартный анализ?". В этой книжке вводится еще одно множество чисел, которое включает в себя множество действительных чисел. Это множество сформировано тем, что к действительным числам прибавляются бесконечно малые, как обычные числа. Следовательно бесконечности в данном контексте это тоже числа (единица делить на бесконечно малую). Элементы такого множества наз. гипердействительными числами. Такой подход носит название неархимедового, в отличие от архимедового (стандартного).

 
 
 
 
Сообщение11.03.2006, 12:54 
Аватара пользователя
Если кто читал эту книжку, интересно Ваше мнение о ней и вообще о нестандартном анализе.

 
 
 
 
Сообщение16.03.2006, 21:00 
Аватара пользователя
Нестандартный анализ - это в принципе игра с теорией моделей, где есть такая теорема (кажется о полноте теории моделей), которая утверждает, что у всякой непротиворечивой теории существует модель. Если из теории чисел исключить аксиому Архимеда и добавить наличие бесконечно малых (и как следствие бесконечно больших) чисел, то полученная теория гипердействительных чисел будет тоже непротиворечивой и соответственно иметь эту самую модель. С введением бесконечно малых чисел отпадает нужда в епсилон-дельта рассуждениях и, кажется, пределах, что несколько сокращает выкладки.

 
 
 [ Сообщений: 14 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group