2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Диофантово уравнение x^2+y^2=3z^2
Сообщение14.09.2008, 11:31 
Не могу доказать, что диофантово уравнение x^2+y^2=3z^2 не имеет решений в целых числах кроме x=y=z=0(или найти такое решение). Эту задачу можно свести к такой: "доказать, что на кривой x^2+y^2=3(окружность радиуса \sqrt3 с центром в начале координат) нет рациональных точек". Пытался через сравнения, но там совсем глухо :evil: .

 
 
 
 
Сообщение14.09.2008, 12:20 
Аватара пользователя
Рассмотрите по модулю 3.

 
 
 
 
Сообщение14.09.2008, 12:45 
PAV писал(а):
Рассмотрите по модулю 3.

Может так:
x,y,z- попарно взаимно просты.
x^2+y^2\equiv0(mod\ 3)\\x^2\equiv1(mod\ 3)\\y^2\equiv2(mod\ 3)
А по критерию Эйлера 2 является квадратичным невычетом по модулю 3.

 
 
 
 
Сообщение14.09.2008, 13:17 
Аватара пользователя
Любое число, не кратное 3, будучи возведенным в квадрат дает при делении на 3 остаток 1.

 
 
 
 Re: Диофантово уравнение x^2+y^2=3z^2
Сообщение05.11.2013, 20:17 
Всё не так! Смысла, нет смысла. Из всей этой писанины не понятно почему одни уравнения решаются другие нет!
Так что начнём.
Диофантово уравнение $Y^2+aX^2=aZ^2$ имеет довольно простые формулы описывающие его решения:
$$Y=2aps$$
$$X=ap^2-s^2$$
$$Z=ap^2+s^2$$
Здесь везде числа p,s являются целыми и задаются нами.
Уравнение же $X^2+Y^2=aZ^2$ хотя с виду имеет более простой вид формулы решения выглядят более сложно.
Вот как они выглядят, решения есть если корень является целым. Как всё просто:
Первое решение:
$$X=-(1\pm\sqrt{a-1})p^2+2((a-1)\sqrt{a-1}\pm1)ps+(1-a\mp(a-1)\sqrt{a-1})s^2$$
$$Y=(1-a\mp\sqrt{a-1})p^2+2(\sqrt{a-1}\pm1)ps+(a^2-2a-1\mp(a-1)\sqrt{a-1})s^2$$
$$Z=-(1\pm\sqrt{a-1})p^2+2(\sqrt{a-1}\pm1)ps+(a-3\mp(a-1)\sqrt{a-1})s^2$$

Второе решение:
$$X=(a-1\pm\sqrt{a-1})p^2-2a(\sqrt{a-1}\pm1)ps+2a(1\pm\sqrt{a-1})s^2$$
$$Y=(1\pm\sqrt{a-1})p^2-2a(\sqrt{a-1}\pm1)ps+(2a^2-2a\pm2a\sqrt{a-1})s^2$$
$$Z=(1\pm\sqrt{a-1})p^2-2(2\sqrt{a-1}\pm{a})ps+2a(1\pm\sqrt{a-1})s^2$$

Третье решение:
$$X=(a\pm\sqrt{2a})p^2-2(\sqrt{2a}\pm{a})ps+(3a-a^2\pm(a-1)\sqrt{2a})s^2$$
$$Y=(a\pm\sqrt{2a})p^2-2((a-1)\sqrt{2a}\pm{a})ps+(a^2-a\pm(a-1)\sqrt{2a})s^2$$
$$Z=(2\pm\sqrt{2a})p^2-2(\sqrt{2a}\pm{a})ps+(2\pm(a-1)\sqrt{2a})s^2$$

Ну последнее о чём хотелось бы упомянуть. Прежде чем подставлять "а" в формулы убедитесь, что это число не пропорционально квадрату какого то нибудь числа. В этом случае подставляйте сокращенное "а" в формулы, а в конечном ответе умножьте X,Y на соответствующее число. Ясно?
То есть если $a=kt^2$ подставляете в формулы "k". И ответом будет $(tX,tY,Z)$
Правда учесть надо всё равно случай когда корни целые, То есть не пропустить ни одно решение!

 
 
 
 Re: Диофантово уравнение x^2+y^2=3z^2
Сообщение05.11.2013, 20:45 
Аватара пользователя
 !  individa, предупреждение за оффтоп, некропост и захват темы. С учётом предыдущих нарушений - недельный бан за систематическое нарушение правил форума.

 
 
 
 Re: Диофантово уравнение x^2+y^2=3z^2
Сообщение05.11.2013, 20:52 
individa в сообщении #785264 писал(а):
Уравнение же $X^2+Y^2=aZ^2$ хотя с виду имеет более простой вид формулы решения выглядят более сложно.
Это потому, что Вы решаете это уравнение кустарными методами. Судя по тем нелепым формулам, что Вы приводите, Вы даже не понимаете, при каких целых $a$ уравнение $X^2+Y^2=aZ^2$ разрешимо в целых числах, а при каких --- неразрешимо.

 
 
 
 Re: Диофантово уравнение x^2+y^2=3z^2
Сообщение10.01.2014, 23:21 

(Оффтоп)

А где такие уравнения проходят?

 
 
 
 Re: Диофантово уравнение x^2+y^2=3z^2
Сообщение11.01.2014, 08:59 

(Оффтоп)

Pineapple, эти уравнения изучаются (с разных точек зрения) в линейной алгебре, теории чисел и алгебраической геометрии.

 
 
 [ Сообщений: 9 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group