2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Счётность антицепи
Сообщение24.08.2008, 00:04 
Аватара пользователя
Задача: содержит ли $\mathcal{P}(\mathbb{N})$ несчётную антицепь?

.........................................
Если интересно вот какие есть идеи:

Каждому множеству поставим в соответствие двоичную дробь. Например такая дробь $.011111\dots$ будет соответстовать множеству $\mathbb{N} \setminus \{1\} $. А множеству $\{1\}$ будет соответвовать $.10000\dots$

Из одного нетривиального элемента (не 0 и не 1) можно всегда произвести новое множество поменяв как минимум одну 1 на 0, и как минимум один 0 на 1. То есть $0.010000\dots$ и $0.100000\dots$ упорядоченными не будут, так как оба имеют уникальные элементы. Только как это использовать я не знаю.

С другой стороны, хотелось бы использовать несчётность иррациональных чисел, но между двумя иррациональными числами может лежать рациональное число, и в этом случае соответсвующие множества могут оказаться упорядоченными.
.........................................

Будьте добры, подтолкните в правильном направлении. Спасибо!

 
 
 
 
Сообщение24.08.2008, 01:08 
Аватара пользователя
"Антицепь" в каком смысле? Чтобы никакое из подмножеств не содержалось ни в каком другом?

bubu gaga в сообщении #140419 писал(а):
С другой стороны, хотелось бы использовать несчётность иррациональных чисел, но между двумя иррациональными числами может лежать рациональное число, и в этом случае соответсвующие множества могут оказаться упорядоченными.


Между двумя иррациональными числами всегда лежит рациональное. Но использовать иррациональные числа можно (и даже не нужно различать рациональные и иррациональные).

 
 
 
 
Сообщение24.08.2008, 02:16 
Аватара пользователя
Someone писал(а):
"Антицепь" в каком смысле? Чтобы никакое из подмножеств не содержалось ни в каком другом?

Между двумя иррациональными числами всегда лежит рациональное. Но использовать иррациональные числа можно (и даже не нужно различать рациональные и иррациональные).


Да, в этом.

Про рациональное я неточно выразился. Имел ввиду такую ситуацию $\sqrt{2} - 1$ и $\sqrt{2} - 1.1$. Разность рациональная. То есть в двоичном представлении начиная с какого-то момента все члены одинаковы. Тогда может получиться например такая ситуация

$0.000100101001000100001 \dots $
$0.000000101001000100001 \dots $

Оба иррациональные, но второе множество является подмножеством первого, следовательно они не могут принадлежать одной антицепи.

 
 
 
 
Сообщение24.08.2008, 02:30 
Аватара пользователя
Не пользуйтесь двоичными записями чисел. Рассмотрите вместо этого последовательности рациональных чисел, сходящиеся к различным действительным числам.

 
 
 
 
Сообщение24.08.2008, 17:42 
Аватара пользователя
Someone писал(а):
Не пользуйтесь двоичными записями чисел. Рассмотрите вместо этого последовательности рациональных чисел, сходящиеся к различным действительным числам.


Вот что получается.

1. Воспользуемся биекцией между $\mathbb{N}$ и $\mathbb{Q}^+$. Из полноты $\mathbb{R}$ следует, что каждая фундаментальная последовательность в нём имеет предел. Но есть если два числа различны, это ещё не значит, что множества неупорядочены.

$\pi \leftarrow \{3, \; 3.1, \; 3.14, \; 3.141, \; 3.1415 \; \dots \}$
$3.141 \leftarrow \{3, \; 3.1, \; 3.14, \; 3.141, \; 3.141 \; \dots \}$

Следовательно выкидываем рациональные.

2. Теперь надо доказать, что два множества полученные таким способом неупорядочены. Допустим, что для двух иррациональных чисел $\alpha$ и $\beta$ мы получили следующие множества рациональных чисел $A$ и $B$. Например вот так:

$\alpha = \pi \qquad \Rightarrow \qquad A = \{3, \; 3.1, \; 3.14, \; 3.141, \; 3.1415 \; \dots \}$

Далле предположим, что $A \subset B$

3. Множества $A$ и $B$ бесконечны так как ни одна из десятичных записей не заканчивается нулём в периоде. Тогда из $a_i \ne b_i$ следует, что для всех $n > i$ верно $a_n \ne b_n$. Это значило бы, что множества $A \not \subset B$. Противоречие.

4. Следовательно для любого $i$ получаем $a_i = b_i$, что значит, что из $A \subset B$ следует $A = B$. Все различные множества неупорядочены.

Короче к сожалению не получается :?

 
 
 
 
Сообщение24.08.2008, 19:27 
Аватара пользователя
Как-то уж очень сложно. Во-первых, не нужно рассматривать десятичные записи. Во-вторых, не надо брать произвольные последовательности, ограничьтесь такими, в которых нет повторяющихся членов. В-третьих, последовательности, сходящиеся к различным действительным числам, могут иметь лишь конечное число общих членов.

 
 
 
 
Сообщение25.08.2008, 16:19 
Аватара пользователя
Someone писал(а):
Не надо брать произвольные последовательности, ограничтесь такими, в которых нет повторяющихся членов.


Начну сначала.

А где можно прочитать, как доказать, что для каждого действительного числа можно построить такую последовательность? И где описано как её собственно строить?

Спасибо!

 
 
 
 
Сообщение25.08.2008, 17:21 
Аватара пользователя
Пусть задано действительное число $x$. Для каждого $n\in\mathbb N$ найдём рациональное число $r_n$, удовлетворяющее условию $\frac 1{n+1}<|x-r_n|<\frac 1n$, то есть, выбираем $r_n$ либо из интервала $\left(x-\frac 1n,x-\frac 1{n+1}\right)$, либо из интервала $\left(x+\frac 1{n+1},x+\frac 1n\right)$. Получим требуемую последовательность.

 
 
 
 
Сообщение25.08.2008, 17:29 
Аватара пользователя
Someone писал(а):
Пусть задано действительное число $x$. Для каждого $n\in\mathbb N$ найдём рациональное число $r_n$, удовлетворяющее условию $\frac 1{n+1}<|x-r_n|<\frac 1n$, то есть, выбираем $r_n$ либо из интервала $\left(x-\frac 1n,x-\frac 1{n+1}\right)$, либо из интервала $\left(x+\frac 1{n+1},x+\frac 1n\right)$. Получим требуемую последовательность.


Понял :oops:. Мог бы сам догадаться. Спасибо.

 
 
 [ Сообщений: 9 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group