2. Кто вас учил набирать формулу кусками? Подойдите к нему и плюньте... Или сами додумались? А , ясно , вам хочется чтобы синус и экспонента были набраны прямым шрифтом, а получается косой... Так это просто:
ТС не слишком виноват. Так работает LaTeX Помощник для тех, кто не умеет им пользоваться.
Gspace, набирайте сами, вам же проще будет. На всю формулу должно быть два доллара - один в начале, другой в конце. У вас их очень много.
Большое спасибо, всё получилось)
3. Фигурные скобки тут неуместны, используйте круглые.
Исправил)
1. Одна из скобок не закрыта, т.ч. что там вы интегрируете--неясно.
2. Кто вас учил набирать формулу кусками? Подойдите к нему и плюньте... Или сами додумались? А , ясно , вам хочется чтобы синус и экспонента были набраны прямым шрифтом, а получается косой... Так это просто:
и далее везде (почти, ... )
Исправил)
-- 19.11.2024, 12:06 --Кстати, наткнулся на, возможно,
похожее.
Спасибо! Это может помочь
-- 19.11.2024, 12:18 --Как понимаю, мажорируется
же.
, то бишь, разбив на некий конечный отрезок и хвост, получаем достаточно быстро убывающий хвост, так что можно выбрать отрезок с достаточно малым хвостом, и посчитать на нём по формулам численного интегрирования. Более того, если я правильно понял, что там под синусом, аргумент его достаточно быстро сходится к некой константе. Или вам нужна именно формула?
-- 19.11.2024, 11:11 --При интегрировании по частям, из-за сложной функции синуса, интеграл будет увеличиваться в размере, что в итоге дает бесконечно растущий ряд
А вот тут не понял. Как точное преобразование конечного интеграла может превратить его в бесконечно растущий ряд?
Да, мне нужна именно формула.
Бесконечно растущий ряд получается по причине того, что, используя формулу интегрирования по частям, за
я принимаю сложную функцию синуса, а за
- функцию экспоненты. И тогда получается, что
я нахожу, а новая подынтегральная функция будет равна
. Так как мой синус имеет в аргументе другую функцию, получается, что
. И так с каждой итерацией я нахожу какое-то слагаемое плюс новый интеграл, который длиннее предыдущего. По этой причине я называл эти слагаемые рядом.