2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Ошибка в Колмогоров - Фомин
Сообщение04.11.2024, 22:26 


29/10/21
74
Теорема. Если $T$ - компактное пространство, то каждое его бесконечное подмножество имеет хотя бы одну предельную точку.
В книге строят центрированные множества вида: $X_n = (x_n,x_{n+1},...)$, и говорят, что они замкнутые. Но это ведь не верно для произвольных топологических пространств?

 Профиль  
                  
 
 Re: Ошибка в Колмогоров - Фомин
Сообщение04.11.2024, 22:46 
Заслуженный участник
Аватара пользователя


26/01/14
4834
Gg322 в сообщении #1660670 писал(а):
Теорема. Если $T$ - компактное пространство, то каждое его бесконечное подмножество имеет хотя бы одну предельную точку.
В книге строят центрированные множества вида: $X_n = (x_n,x_{n+1},...)$, и говорят, что они замкнутые. Но это ведь не верно для произвольных топологических пространств?
Ошибки нет. Когда делается вывод о замкнутости, известно, что множество $X_1=(x_1,x_2,\ldots)$ (а значит и все множества $X_n$) не имеют предельных точек. И тогда указанные множества действительно замкнутые: ведь у незамкнутых множеств обязательно есть предельные точки.

-- 04.11.2024, 22:49 --

На всякий случай добавлю: по Колмогорову-Фомину, точка $x$ называется предельной для множества $M$ в топологическом пространстве, если любая окрестность этой точки содержит хотя бы одну точку из $M$, не совпадающую с $x$.

 Профиль  
                  
 
 Re: Ошибка в Колмогоров - Фомин
Сообщение04.11.2024, 23:03 


29/10/21
74
Mikhail_K
Все понял, спасибо!

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 3 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_K


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group