Берем 2 любые точки с целочисленными координатами, соединяем их отрезком. Этот отрезок считаем высотой
На самом деле координаты середины основания не обязаны быть целыми, могут быть и полуцелыми. Ну ладно, где целые, там и рациональные. Я решал двумя способами - с диофантовым
kak
Booker48 и переместив середину основания в т.
(если в рациональных, то можно). С двумя прямыми:
и
. (и про
не забыл). В обеих случаях получается
параметрическое решение (два параметра - смещение по
и
той точки которую выбрали поставить в начале координат). В отличие от просто решения диофантового уравнения, в геометрической интерпретации нужно учитывать несколько факторов:
1. Точки не должны совпадать. (вершины)
2. Не должны лежать на одной прямой.
3. Решения, где две вершины просто "меняются местами" считать одинаковыми и избегать (фильтрировать).
Приятная задачка получается.