Случайная величина
![$\xi$ $\xi$](https://dxdy-01.korotkov.co.uk/f/8/5/e/85e60dfc14844168fd12baa5bfd2517d82.png)
распределена по нормальному закону
![$N(\theta^{k},a)$ $N(\theta^{k},a)$](https://dxdy-04.korotkov.co.uk/f/f/b/8/fb841507ddbfdab98df589306dc0c48782.png)
,
![$\theta>0$ $\theta>0$](https://dxdy-03.korotkov.co.uk/f/a/9/5/a9561a6321bb0f1a014ea9567b369f2582.png)
. Над случайной величиной произведено
![$n$ $n$](https://dxdy-02.korotkov.co.uk/f/5/5/a/55a049b8f161ae7cfeb0197d75aff96782.png)
наблюдений. Найти оптимальную оценку параметра
![$\theta^{k}$ $\theta^{k}$](https://dxdy-03.korotkov.co.uk/f/a/0/e/a0eed17bd1475e7aade620274b01da3382.png)
.
Решение:
![$\xi\sim N(\theta^{k},a)$, $f_{\xi}(x,\theta)=\frac{1}{\sqrt{2a\pi}}\exp(-\frac{(x_{j}-\theta^{k})^{2}}{2a}), \theta>0$ $\xi\sim N(\theta^{k},a)$, $f_{\xi}(x,\theta)=\frac{1}{\sqrt{2a\pi}}\exp(-\frac{(x_{j}-\theta^{k})^{2}}{2a}), \theta>0$](https://dxdy-02.korotkov.co.uk/f/5/1/7/517db8e213e5857ce0bc72c1c30a60a582.png)
![$L(\underline{x},\theta)=\prod_{j=1}^{n}f_{\xi}(x_{j},\theta)=\prod_{j=1}^{n}[\frac{1}{\sqrt{2a\pi}}\exp(-\frac{(x_{j}-\theta^{k})^{2}}{2a})]=\operatorname{const}\cdot\exp(-\frac{1}{2a}\sum_{j=1}^{n}(x_{j}-\theta^{k})^{2})$ $L(\underline{x},\theta)=\prod_{j=1}^{n}f_{\xi}(x_{j},\theta)=\prod_{j=1}^{n}[\frac{1}{\sqrt{2a\pi}}\exp(-\frac{(x_{j}-\theta^{k})^{2}}{2a})]=\operatorname{const}\cdot\exp(-\frac{1}{2a}\sum_{j=1}^{n}(x_{j}-\theta^{k})^{2})$](https://dxdy-01.korotkov.co.uk/f/0/f/5/0f51c470fa56c50dee75924c90dee38282.png)
![$\bar{L}(\underline{x},\theta)=\ln(L(\underline{x},\theta))=\ln(\operatorname{const})-\frac{1}{2a}\sum_{j=1}^{n}(x_{j}-\theta^{k})^{2}$ $\bar{L}(\underline{x},\theta)=\ln(L(\underline{x},\theta))=\ln(\operatorname{const})-\frac{1}{2a}\sum_{j=1}^{n}(x_{j}-\theta^{k})^{2}$](https://dxdy-01.korotkov.co.uk/f/c/f/a/cfa7a258e77e78c72a0e88bc04752e1882.png)
![$\frac{\partial\bar{L}(\underline{x},\theta)}{\partial\theta}=-\frac{1}{2a}\sum_{j=1}^{n}2(x_{j}-\theta^{k})(-k\theta^{k-1})=\frac{nk\theta^{k-1}}{a}(\bar{X}-\theta^{k})$ $\frac{\partial\bar{L}(\underline{x},\theta)}{\partial\theta}=-\frac{1}{2a}\sum_{j=1}^{n}2(x_{j}-\theta^{k})(-k\theta^{k-1})=\frac{nk\theta^{k-1}}{a}(\bar{X}-\theta^{k})$](https://dxdy-03.korotkov.co.uk/f/a/2/0/a20909be65a6d5997e008800c98e605682.png)
![$a(\theta)=\frac{nk\theta^{k-1}}{a}, T(\underline{x})=\bar{X}, \tau(\theta)=\theta^{k}$ $a(\theta)=\frac{nk\theta^{k-1}}{a}, T(\underline{x})=\bar{X}, \tau(\theta)=\theta^{k}$](https://dxdy-04.korotkov.co.uk/f/b/7/5/b75cd01c2b969c3ee961c1c9a235faff82.png)
По критерию эффективности
![$T(\underline{x})=\bar{X}$ $T(\underline{x})=\bar{X}$](https://dxdy-04.korotkov.co.uk/f/f/8/3/f83367ab64778e5c01b4d49709a84c3382.png)
- эффективная оценка для
![$\tau(\theta)=\theta^{k}$ $\tau(\theta)=\theta^{k}$](https://dxdy-02.korotkov.co.uk/f/9/1/a/91a7cb0b72b2389d854c852a4c34c96a82.png)
, но для
![$\theta^{2k}$ $\theta^{2k}$](https://dxdy-02.korotkov.co.uk/f/1/e/2/1e2b5f304ea04877dddcf43b43c7134182.png)
ее не существует.
![$L(\underline{x},\theta)=\operatorname{const}\cdot\exp(-\frac{1}{2a}\sum_{j=1}^{n}(x_{j}-\theta^{k})^{2})=\operatorname{const}\cdot\exp(-\frac{1}{2a}\sum_{j=1}^{n}x_{j}^{2})\cdot\exp(-\frac{1}{2a}\sum_{j=1}^{n}(-2\theta^{k}x_{j}+\theta^{2k})^{2})$ $L(\underline{x},\theta)=\operatorname{const}\cdot\exp(-\frac{1}{2a}\sum_{j=1}^{n}(x_{j}-\theta^{k})^{2})=\operatorname{const}\cdot\exp(-\frac{1}{2a}\sum_{j=1}^{n}x_{j}^{2})\cdot\exp(-\frac{1}{2a}\sum_{j=1}^{n}(-2\theta^{k}x_{j}+\theta^{2k})^{2})$](https://dxdy-01.korotkov.co.uk/f/0/5/a/05a5066a0e3ca2e411bf355752bc2ff082.png)
![$h(\underline{x})=\operatorname{const}\cdot\exp(-\frac{1}{2a}\sum_{j=1}^{n}x_{j}^{2}), g(T(\underline{x}),\theta)=\exp(-\frac{1}{2a}\sum_{j=1}^{n}(-2\theta^{k}x_{j}+\theta^{2k})^{2})$ $h(\underline{x})=\operatorname{const}\cdot\exp(-\frac{1}{2a}\sum_{j=1}^{n}x_{j}^{2}), g(T(\underline{x}),\theta)=\exp(-\frac{1}{2a}\sum_{j=1}^{n}(-2\theta^{k}x_{j}+\theta^{2k})^{2})$](https://dxdy-03.korotkov.co.uk/f/a/a/0/aa010cbb0d38c977100723e8c483b60782.png)
По критерию факторизации
![$T(\underline{x})=\bar{X}$ $T(\underline{x})=\bar{X}$](https://dxdy-04.korotkov.co.uk/f/f/8/3/f83367ab64778e5c01b4d49709a84c3382.png)
достаточная статистика.
![$E\bar{X}=E[\frac{1}{n}\sum_{j=1}^{n}X_{j}]=\frac{1}{n}\sum_{j=1}^{n}EX_{j}=\frac{1}{n}n\theta^{k}=\theta^{k}$ $E\bar{X}=E[\frac{1}{n}\sum_{j=1}^{n}X_{j}]=\frac{1}{n}\sum_{j=1}^{n}EX_{j}=\frac{1}{n}n\theta^{k}=\theta^{k}$](https://dxdy-01.korotkov.co.uk/f/8/8/b/88bb1f30af971e59561804988214abab82.png)
![$D\bar{X}=D[\frac{1}{n}\sum_{j=1}^{n}X_{j}]=\frac{1}{n^{2}}\sum_{j=1}^{n}DX_{j}=\frac{1}{n^{2}}n a=\frac{a}{n}$ $D\bar{X}=D[\frac{1}{n}\sum_{j=1}^{n}X_{j}]=\frac{1}{n^{2}}\sum_{j=1}^{n}DX_{j}=\frac{1}{n^{2}}n a=\frac{a}{n}$](https://dxdy-03.korotkov.co.uk/f/a/f/2/af2b9a7bf8e6d182a206ebd40128be5d82.png)
Значит,
![$\bar{X}\sim N(\theta^{k},\frac{a}{n})$ $\bar{X}\sim N(\theta^{k},\frac{a}{n})$](https://dxdy-01.korotkov.co.uk/f/8/e/0/8e0be4a7953d11a996855146417f454382.png)
По критерию эффективности,
![$\bar{X}$ $\bar{X}$](https://dxdy-01.korotkov.co.uk/f/0/5/3/05330d44fdfc78bc5a122fa403597c6182.png)
эффективная оценка для
![$\theta^{k}$ $\theta^{k}$](https://dxdy-03.korotkov.co.uk/f/a/0/e/a0eed17bd1475e7aade620274b01da3382.png)
, (*) следовательно, оптимальная оценка для
![$\theta^{k}$ $\theta^{k}$](https://dxdy-03.korotkov.co.uk/f/a/0/e/a0eed17bd1475e7aade620274b01da3382.png)
, то есть,
![$\bar{X}$ $\bar{X}$](https://dxdy-01.korotkov.co.uk/f/0/5/3/05330d44fdfc78bc5a122fa403597c6182.png)
полная достаточная статистика.
![$H(T): EH(T)=\theta^{2k} \forall \theta>0$ $H(T): EH(T)=\theta^{2k} \forall \theta>0$](https://dxdy-02.korotkov.co.uk/f/1/3/1/131adb1a8bbf48713a7e3e2388d47b7982.png)
![$E\bar{X}^{2}=(E\bar{X})^{2}+D\bar{X}=\theta^{2k}+\frac{a}{n}\neq\theta$ $E\bar{X}^{2}=(E\bar{X})^{2}+D\bar{X}=\theta^{2k}+\frac{a}{n}\neq\theta$](https://dxdy-02.korotkov.co.uk/f/9/3/c/93cc26eed2b7b6b12d8d34aa96d2fe5982.png)
Пусть
![$H(T)=\bar{X}^{2}-\frac{a}{n}$ $H(T)=\bar{X}^{2}-\frac{a}{n}$](https://dxdy-04.korotkov.co.uk/f/f/a/1/fa15bd8d103295e045081743c6fa1ec582.png)
![$EH(T)=E[\bar{X}^{2}-\frac{a}{n}]=E\bar{X}^{2}-\frac{a}{n}=\theta^{2k}+\frac{a}{n}-\frac{a}{n}=\theta^{2k}$ $EH(T)=E[\bar{X}^{2}-\frac{a}{n}]=E\bar{X}^{2}-\frac{a}{n}=\theta^{2k}+\frac{a}{n}-\frac{a}{n}=\theta^{2k}$](https://dxdy-04.korotkov.co.uk/f/3/5/6/3568958c7e1953d9139512c691ae94f982.png)
Значит,
![$H(T)=\bar{X}^{2}-\frac{a}{n}$ $H(T)=\bar{X}^{2}-\frac{a}{n}$](https://dxdy-04.korotkov.co.uk/f/f/a/1/fa15bd8d103295e045081743c6fa1ec582.png)
- оптимальная оценка для
![$\theta^{2k}$ $\theta^{2k}$](https://dxdy-02.korotkov.co.uk/f/1/e/2/1e2b5f304ea04877dddcf43b43c7134182.png)
Скажите, пожалуйста, корректен ли переход обозначенный звездочкой (*)? На какую теорему в этом месте можно сослаться?