2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Наименьшие квадраты на сдвинутых и не переодических функциях
Сообщение11.09.2024, 18:34 


23/02/23
124
Пусть для $t \in [0, T]$ даны
набор измеряемых сигналов $f_1(t), ..., f_N(t)$
и некоторые числа $h>0$ и целое $D$, причем $Dh$ много меньше $T$.
Также предположим, что по $t$ - у нас есть какая-то дискретизация, для простоты, возьмем ее с тем же шагом $h$.

Необходимо найти
набор неизвестных сигналов $p_1(t), ..., p_K(t)$
и весовые коэффициенты $b_{d,n,k}$
что
$$\min_{b_{d,n,k}, p_k} \sum_{n=1}^N \left[ \int_0^{T-Dh} ||f_n(t) - \sum_{d=1}^D \sum_{k=1}^K b_{d,n,k} p_k(t+hd) ||_2^2 dt +
  \lambda \sum_{d=1}^D \sum_{k=1}^K b_{d,n,k}^2 \right].$$

Здесь $\lambda$ - что-то на подобие Тихоновского регуляризатора.

В более общем случае $D$ желательно также найти из выше минимизируемой невязки.

Я понимаю, что метод покомпонентной минимизации, когда мы фиксируем $b$ и ищем минимум по $p$, и наоборот, будет монотонно сходиться, но хочется какого-то красивого решения, с лучшей сходимостью и с какими-то доказуемыми свойствами. Сделать Фурье - не получится, функции в общем случае не периодичные.

В какую сторону копать?

 Профиль  
                  
 
 Re: Наименьшие квадраты на сдвинутых и не переодических функциях
Сообщение12.09.2024, 12:17 
Заслуженный участник
Аватара пользователя


11/03/08
9904
Москва
Наивно-эмпирическое предложение.
При $D=1$ главные компоненты напрашиваются. При $D>1$ дополняем матрицу F сдвинутыми на шаг, два, три... значениями функций и считаем ГК. Затем из $f_n$ делаем вектор-регрессанд, пристыковав вектора последовательно и последовательно же состыковав матрицы полученных главных компонент. И пошаговой регрессией отбираем.

 Профиль  
                  
 
 Re: Наименьшие квадраты на сдвинутых и не переодических функциях
Сообщение13.09.2024, 13:22 


23/02/23
124
Евгений Машеров в сообщении #1654358 писал(а):
При $D=1$ главные компоненты напрашиваются.

спасибо большое! Да, единственно возможное решение, согласен

Евгений Машеров в сообщении #1654358 писал(а):
При $D>1$ дополняем матрицу F сдвинутыми на шаг, два, три... значениями функций и считаем ГК.


тут я, каюсь, всех запутал, так как на $D$ у меня сверху обычно есть оценка, и она обычно - порядка тысячи, а вот вместо

Цитата:
В более общем случае $D$ желательно также найти из выше минимизируемой невязки.

я хотел написать
В более общем случае $K$ желательно также найти из выше минимизируемой невязки.


Про размеры...

Исходные данные из $f$ поступают непрерывно в виде оцифрованных данных, грубо говоря $T=0.1$, $h=10^{-5}$, $D=10^3$, $N=200$, в то же время, ожидаемое значение $K$ должно быть довольно не большим, почти всегда оно равно точно 4 (меньше не будет никогда), и иногда оно бывает больше, наверное может доходить до 20.

Хочется не только решать эту задачу разово, но и для поступающих данных получать решение, то есть $p$ как если бы из 200 входных функций $f$ мы получали бы эти самые $p$. Про вычисляемые коэффициенты $b$ - они тоже во времени меняются, но, как я понимаю, должны меняться еще реже.

-- 13.09.2024, 13:31 --

Евгений Машеров в сообщении #1654358 писал(а):
Затем из $f_n$ делаем вектор-регрессанд, пристыковав вектора последовательно и последовательно же состыковав матрицы полученных главных компонент. И пошаговой регрессией отбираем.

а вот тут я немного не понял. Поправьте, пожалуйста, так ли вы хотели:

пусть главные компоненты у исходной матрицы и всех ее сдвинутых вариантов сохранены в $u_l(t)$.

Правильно ли я понял, что Вы предлагаете сделать новую функцию, которая
при $t \in [0,T]$: $f(t)$, а
при $t \in [T,2T]$: $u(t-T)$.

Но зачем?

 Профиль  
                  
 
 Re: Наименьшие квадраты на сдвинутых и не переодических функциях
Сообщение13.09.2024, 19:15 
Заслуженный участник
Аватара пользователя


11/03/08
9904
Москва
Нет. Я имел в виду регрессию вектора y на матрицу X, при этом $y(i+Nn)=f_n(i)$, N - число отсчётов в оцифровке функции $f_n(t)$, а матрица X образована повторением набора главных компонент.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 4 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group