2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3
 
 Re: Алгоритм диагонализации матрицы
Сообщение06.08.2024, 20:59 


07/01/23
444
мат-ламер в сообщении #1648606 писал(а):
А каков примерно у вас размер матрицы?


Произвольный, зависит от размера молекулы. Если в молекуле например 50 атомов - то матрица 150*150.
Полагаю скорее всего мне надо будет реализовывать диагонализацию Якоби; слышал мнение, что может для больших матриц и нет универсального неитеративного алгоритма. Ну и хорошо.
Хочу ответить ещё на замечания в моих темах: у меня так мозг работает, что я не могу выучить какой-то один предмет и стать специалистом в нём одном. На форуме возможно уже заметили, что я дискутирую с физиками о физике, с биологами о биологии, с историками об истории, с экономистами об экономике и так далее; а ещё есть несколько других сфер, в которых я тоже что-то понимаю и дискутирую о них на других форумах.
Мой стиль мышления прекрасно бы себя проявил, если бы я мог нанять специалиста например в физико-математических науках, который бы меня консультировал и решал бы поставленные мной задачи. Если тут кого-то заинтересует моё предложение - могу предложить 80 000р в месяц при работе на четверть ставки (возможно и больше ставка или больше оплата, в зависимости от результативности).

Cos(x-pi/2), спасибо, буду понемногу изучать ваши посты.

 Профиль  
                  
 
 Re: Алгоритм диагонализации матрицы
Сообщение08.08.2024, 01:21 


23/02/23
126
Народ, ну так троллить уже третью страницу!!! Эти задачи даже в 90-х уже считались обсосанными-переобсосанными для размерностей до миллиона неизвестных, а тут третью страницу меньше сотни педалируют и только сейчас на 150 вышли.

Есть два хороших источника для ТС. Первый источник - это Lapack (надеюсь, ТС в гугле не забанили), а конкретно в нем надо искать dsyev и dsyevd. Не пугаться, что это - Фортран, а понимать, что эти две подпрограммы еще с 1981 по настоящее время - самые лучшие реализации в мире этих алгоритмов для небольших и плотных матриц.

Второй источник - это две книжки, которые стоит почитать, Дж. Деммель - Вычислительная линейная алгебра, и Тыртышников - Методы Численного Анализа. Тут ТСу придется перестать троллить и наконец-то начать наслаждаться кратким и емким изложением и вникнуть в суть вопроса.

 Профиль  
                  
 
 Re: Алгоритм диагонализации матрицы
Сообщение08.08.2024, 01:39 
Заслуженный участник
Аватара пользователя


15/10/08
30/12/24
12599
zgemm в сообщении #1648842 писал(а):
так троллить уже третью страницу!!!
Да тут и по тридцать страниц на ровном месте набивали. Флудить — не думать, ума не надо.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 33 ]  На страницу Пред.  1, 2, 3

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group