Добрый день. Решаю задачу 2.4.4 из сборника Белоусова и Бурмистрова "Задачи по теоретической физике":
Используя соотношение неопределенностей для

и

, определить минимальное значение выражения:

Есть авторское решение, представленное на скриншоте. Однако мы можем заметить, что:

То есть значение выражения есть константа, которая не минимизируется. Есть ощущение, что у авторов допущена ошибка, т.к. соотношение неопределенностей утверждает, что есть состояние, в котором достигается минимум, но это состояние вообще не обязано совпадать с

, да и вообще как можно минимизировать значение выражения, которое очевидно является константой.
Собственно, мой вопрос: действительно ли авторы допустили ошибку или мои рассуждения некорректны?
