2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Типа задачи Сахарова
Сообщение18.07.2024, 11:52 
Вариация на тему знаменитой задачи Сахарова. Такая задача могла бы оказаться в задачнике Савченко.

Резиновый жгут приделан к вертикальной стене своим концом. Жгут лежит на горизонтальном столе. На жгут ставят (без начальной скорости) однородный диск и начинают тянуть жгут с постоянной скоростью за свободный конец вдоль стола прочь от стенки. Диск по жгуту не проскальзывает. Жгут воздействия диска не ощущает. Каков предел скорости центра диска при $t\to\infty$?

 
 
 
 Re: Типа задачи Сахарова
Сообщение21.07.2024, 23:20 
никак не разучусь удивляться таким вещам: кинетическая энергия диска стремится к нулю при $t\to\infty$

 
 
 
 Re: Типа задачи Сахарова
Сообщение22.07.2024, 08:51 
Аватара пользователя
А что удивительного? При бесконечной длине резинки и конечной скорости удаления её свободного конца, скорость сообщаемая резинкой диску (где бы он ни устаканился) будет нулевой.

 
 
 
 Re: Типа задачи Сахарова
Сообщение22.07.2024, 09:18 
диск не <<устаканивается>> ,он укатывается в бесконечность

 
 
 
 Re: Типа задачи Сахарова
Сообщение22.07.2024, 10:01 
Утундрий в сообщении #1647052 писал(а):
А что удивительного? При бесконечной длине резинки и конечной скорости удаления её свободного конца, скорость сообщаемая резинкой диску (где бы он ни устаканился) будет нулевой.

Это если ставить диск на конечном расстоянии от стены на уже растянутую в бесконечность резинку. А если ставить на ещё нерастянутую (как в задаче), то когда она растянется в бесконечность, туда же уедет и диск...
Или тут есть какая-то хитрость и скажем "диск" это не то же самое что поставить точку (и следить за ней) на резинке?
Если ставить диск в середину нерастянутой резинки, разве его скорость не будет всегда равна половине скорости подвижного конца?

 
 
 
 Re: Типа задачи Сахарова
Сообщение22.07.2024, 11:44 
Аватара пользователя
wrest в сообщении #1647058 писал(а):
"диск" это не то же самое что поставить точку (и следить за ней) на резинке?
Нет, конечно. Он же вращается.

 
 
 
 Re: Типа задачи Сахарова
Сообщение22.07.2024, 14:48 
Утундрий в сообщении #1647064 писал(а):
Нет, конечно. Он же вращается.

А... Для этого в задаче глагол "ставят" (а не кладут) и прилагательное "однородный" (известен момент инерции), ясно.

 
 
 
 Re: Типа задачи Сахарова
Сообщение24.07.2024, 02:21 
Координата правого края жгута $x_r(t)=l+u t$. Координата центра диска $x_{c}(t)=b+\int\limits_{0}^{t}v_c(t')dt'$. Скорость жгута в точке касания с диском $v_{A}(t)=\frac{x_{c}(t)}{x_r(t)}u$. Отсутствие проскальзывания $v_{A}(t)=v_c(t)+\omega(t) R$. Из уравнений движения для однородного диска получается, что $2v_c'(t)=\omega'(t)R$. Два последних уравнения (после пары дифференцирований уравнения связи) приводят к диффуру $v_c''(t)+\frac{5u}{3(l+u t)}v_c'(t)=0$. Если динамика в момент начального удара описывалась теми же уравнениями (только сила была бесконечной), то начальные условия есть $v_c(0)=\frac{b}{l}\frac{u}{3}, v_c'(0)=-\frac{2 b u^2}{9 l^2}$. Тогда решение $$v_c(t)=\frac{b u}{3 l^{1/3} (l+u t)^{2/3}}$$.

 
 
 
 Re: Типа задачи Сахарова
Сообщение24.07.2024, 09:17 
Вторая производная от скорости -- это для задачи механики многовато.

Вдоль жгута проведем ось $x$ с началом в точке $O$ -- точка крепления жгута к стенке.
$x(t)$ -- координата центра диска; $\varphi$ -- угол поворота диска против часовой стрелки; $s(t)$ -- координата конца жгута; $v$ -- скорость конца жгута.
Связь (неголономная): $s(\dot x+r\dot\varphi)=vx$
кинетический момент диска относительно точки $O$ сохраняется: $J\dot\varphi-mr\dot x=0$
Исключаем из уравнений $\dot\varphi$.

 
 
 [ Сообщений: 9 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group