2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Геометрия единичных кругов
Сообщение03.07.2024, 17:46 
Заслуженный участник


07/08/23
1352
Условие $|a_2 b_2| > 1$ можно записать в виде
$$(s_{XZ}^2 s_{YZ} + s_{XZ} s_{YZ}^2 - (s_{XZ} + s_{YZ} - s_{XY})^2)^2 < s_{XZ}^2 s_{YZ}^2 (1 - s_{XZ}^2 - s_{YZ}^2 - s_{XY}^2 + 2 s_{XZ} s_{YZ} + 2 s_{XZ} s_{XY} + 2 s_{YZ} s_{XY}).$$

 Профиль  
                  
 
 Re: Геометрия единичных кругов
Сообщение04.07.2024, 21:57 


28/06/24
8
dgwuqtj в сообщении #1644869 писал(а):
Я так понял, что на самом деле надо, чтобы тройки кругов не пересекались, а не тройки окружностей (иначе утверждение неверно или надо уточнять условие). Вот некоторые мысли, как можно всё это дело посчитать. Введём обозначения $s_{PQ} = |PQ|^2$ при $P, Q \in \{X, Y, Z, A\}$, тогда все условия на $X$, $Y$, $Z$ запишутся в виде $s_{XY} < s_{YZ} + s_{XZ}$, $s_{XZ} < s_{XY} + s_{YZ}$, $s_{YZ} < s_{XY} + s_{XZ}$ (остроугольность $XYZ$, из неё следуют в том числе неравенства треугольника для $XYZ$ и положительность $s_{PQ}$); $s_{XY}^2 s_{YZ}^2 s_{XZ}^2 + s_{XY}^2 + s_{YZ}^2 + s_{XZ}^2 - 2 s_{XY} s_{YZ} - 2 s_{XY} s_{XZ} - 2 s_{YZ} s_{XZ} > 0$ (условие на радиус описанной окружности вокруг $XYZ$); $s_{XY}, s_{YZ}, s_{XZ} < 4$. Аналогичные условия на $A, X, Z$ и $A, Y, Z$. Кроме того, нужна положительность определителя Кэли—Менгера на $A, X, Y, Z$, чтобы такая четвёрка точек вообще существовала.

Ещё надо как-то выразить $|A z_m|$ (для $|A x_m|$, $|A y_m|$ будет аналогично) и $|a_2 b_2|$. С $|a_2 b_2| \leq 1$ проще всего, это равносильно $\angle XZY + \angle a_2 Z X + \angle b_2 Z Y \leq \pi / 3$, косинусы этих углов известны и сумма этих углов точно меньше $\pi$. Для $|A z_m| \leq 1$ получается $\angle A Z z_m = \pm(\angle X Z A - \frac 1 2 (\angle X Z Y - \angle a_1 Z X - \angle b_1 Z Y))$. Так можно записать неравенства $|A z_m| \leq 1$, $|A x_m| \leq 1$, $|A y_m| > 1$, $|a_2 b_2| > 1$ в виде условий на $s_{PQ}$. А потом проверить программой, что полученная большая система уравнений и неравенств с 6 переменными несовместна.



Спасибо, таким способом, видимо, воспользуюсь если не удастся придумать геометрическое доказательство.

 Профиль  
                  
 
 Re: Геометрия единичных кругов
Сообщение05.07.2024, 08:50 
Заслуженный участник


07/08/23
1352
dgwuqtj в сообщении #1644963 писал(а):
Условие $|a_2 b_2| > 1$ можно записать в виде

А тут я ошибся, так просто не получится.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 18 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Shadow


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group