https://i.yapx.ru/XnLfk.jpga) Может ли существовать интеграл от некоторой функции на ограниченном неизмеримом по Жордану множеству?
b) Интегрируемая ли постоянная функция на ограниченном неизмеримом по Жордану множеству?
c) Верно ли, что если функция интегрируемая на множестве, то она интегрируемая на любом подмножестве множества?
d) Укажите необходимые и достаточные условия на функцию определеную на ограниченном множестве(не обязательно измеримом по Жордану), при которых существует интеграл Римана от функции по данному множеству.
Определение интеграла по множеству
:
где
- индикаторная функция множества
, а
-
-мерный промежуток, который содержит
.
Пункт а) - ответ да. Можно взять нулевую функцию.
Пункт b) - ответ нет. Если множество ограничено и не измеримо по Жордану, значит внутренняя мера и внешняя мера Жордана не совпали, значит верхний и нижний интеграл Дарбу не совпадают. А это означает не интегрируемость.
Пункт с) - ответ нет. Можно взять функцию константу на измеримом множестве, и рассмотреть ее ограничение на неизмеримом подмножестве. По пункту b) она будет неинтегрируемой.
Пункт d) - не знаю.
Правило ли я сделал первые три пункта, и какой ответ в пункте d)?