2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Интеграл Римана в многомерном пространстве
Сообщение24.06.2024, 11:47 
https://i.yapx.ru/XnLfk.jpg
a) Может ли существовать интеграл от некоторой функции на ограниченном неизмеримом по Жордану множеству?
b) Интегрируемая ли постоянная функция на ограниченном неизмеримом по Жордану множеству?
c) Верно ли, что если функция интегрируемая на множестве, то она интегрируемая на любом подмножестве множества?
d) Укажите необходимые и достаточные условия на функцию определеную на ограниченном множестве(не обязательно измеримом по Жордану), при которых существует интеграл Римана от функции по данному множеству.
Определение интеграла по множеству $E$: $$\int\limits_{E}^{} f(x)\cdot dx = \int\limits_{I}^{} f \chi_{E}(x) \cdot dx,$$
где $\chi_{E}$ - индикаторная функция множества $E$, а $I$ - $n$-мерный промежуток, который содержит $E$.
Пункт а) - ответ да. Можно взять нулевую функцию.
Пункт b) - ответ нет. Если множество ограничено и не измеримо по Жордану, значит внутренняя мера и внешняя мера Жордана не совпали, значит верхний и нижний интеграл Дарбу не совпадают. А это означает не интегрируемость.
Пункт с) - ответ нет. Можно взять функцию константу на измеримом множестве, и рассмотреть ее ограничение на неизмеримом подмножестве. По пункту b) она будет неинтегрируемой.
Пункт d) - не знаю.
Правило ли я сделал первые три пункта, и какой ответ в пункте d)?

 
 
 
 Posted automatically
Сообщение25.06.2024, 11:02 
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
по следующим причинам:

- пожалуйста, изложите условие задачи непосредственно в посте. Когда ссылка на картинку устареет, никто не сможет понять, о чем речь.

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение26.06.2024, 12:07 
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»
Причина переноса: не указана.

 
 
 
 Re: Интеграл Римана в многомерном пространстве
Сообщение26.06.2024, 14:25 
Аватара пользователя
В пункте b) я бы сослался на то, что измеримость по Жордану множества эквивалентна интегрируемости единицы. В c) тоже как-то поконкретнее: функция -- тождественная единица на отрезке $[0,1]$, а подмножество -- рациональные точки отрезка. Насчёт d), если сводить к критерию Лебега, то надо потребовать, чтобы множество точек разрыва $ f\chi_E$ на $\overline{E}$ имело лебегову меру нуль.

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group