вывести выражение для потенциала поля равномерно заряженной сферы снаружи нее, пользуясь не уравнением Пуассона а применяя принцип наименьшего значения энергии электростатического поля, запасенной в пространстве вокруг сферы"
По-моему вам надо копать не в сторону решения математической задачи, а в сторону правильной формализации физической задачи.
Я вам советую начать подробно с самого начала. У вас что-то в самом начале не так (ИМХО). И постепенно сюда выкладывать промежуточные результаты. Например, что такое энергия электрического поля? Допустим интеграл от квадрата её напряжённости. Сначала формулы пишите в декартовых координатах. Затем переходим от напряжённости к потенциалу. То есть возникает интеграл от суммы квадратов частных производных. Затем переходим к сферическим координатам. Ввиду сферической симметрии получаем одномерную вариационную задачу с краевыми условиями. И т.д., и т.п.
(Оффтоп)
Правда, я ложусь спать. Так что без меня. Тем более мне рекомендовали в физику не лезть. И вообще, я мог неправильно вас понять.