Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия, Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
В качестве закрепления материала о неприводимых представлениях, я поставил перед собой задачу, найти неприводимые представления группы PSL(2,7). У меня получилось найти неприводимые 8-ми и 7-ми мерные представления, индуцировав представления подгрупп Z3×Z7 и S4 соответственно, но с 6-ти мерным возникли заминки, в литературе говорится, что можно его получить, если в начале индуцировать тривиальное представление S4, получить группу ортогональных операторов, там найти общий собственный вектор, и затем взять к нему ортогональное дополнение мы получаем неприводимое 6-ти мерное представление. Однако у меня выходит, что у операторов нет общего собственного вектора. Может ли этот метод быть ошибочным, и если да, есть ли какие-то другие методы для получения шестимерного представления?
dgwuqtj
Re: Неприводимые представления группы PSL(2,7)
09.03.2024, 22:37
Представления же можно строить многими способами, и индуцируя с подгрупп, и вычисляя таблицу характеров, и иногда их можно явно строить. Для групп построение таблицы характеров можно найти в Fulton, Harris, Representaion theory, параграф 5.2.
Vladimir_Sh
Re: Неприводимые представления группы PSL(2,7)
11.03.2024, 22:33
Добрый день! Спасибо за ответ, ознакомился как строятся соотв. характеры, спасибо. Однако изначально я хотел бы построить именно реализацию представления. Т.е. действие в соотв. векторном пространстве, подобное тому, которое я получил, когда индуцировал одномерное представление группы S4. Поэтому хотелось бы в этом русле получить рекомендацию. Может кто-то здесь уже решал эту задачу?