Вопрос: какие еще "другие" способы возможны?
Ну, например, стандартный олимпиадный.
Раскрасим все клетки квадрата
в
цвета так, чтобы любой прямоугольник
занимал
разных цвета, вот так (рисую только верхний левый угол нашего большого квадрата):
Если удастся разрезать квадрат на прямоугольники, то понятно, что всех цветов в квадрате должно быть поровну. Но как легко сосчитать (ну, скажем, не совсем легко), в получившемся квадрате цветов не поровну.
Клеток с цветом 1 — 245026, с цветом 2 — 245025, с цветом 3 — 245024, с цветом 4 — 245025.
Но тут фишка в том, что считать, сколько именно клеток каждого цвета, вовсе не обязательно, нам же важно знать поровну ли их или нет, а если нет, то каких больше и на сколько. А это можно узнать гораздо проще.
Drimacus, догадываетесь как?