2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Вложение R --> Q^N
Сообщение01.11.2023, 17:08 
Существует ли вложение аддитивных групп $\mathbb{R} \to \mathbb{Q}^\mathbb{N}$, при котором положительные числа переходят в положительные последовательности?

 
 
 
 Re: Вложение R --> Q^N
Сообщение01.11.2023, 17:22 
Аватара пользователя
Положительная последовательность - это в которой все члены положительны, или начиная с некоторого?
Если первое, то нет. И даже нетривиального гомоморфизма $\mathbb R \to \mathbb Q$, при котором положительные числа переходят в неотрицательные, нет.
Если второе, то да. Отобразите каждое вещественное число в последовательность, к нему сходящуюся, чтобы сумма переходила в сумму. Может быть это можно сделать через базис Гамеля, но не соображу, как. Трансфинитной рекурсией вроде делается.

 
 
 
 Re: Вложение R --> Q^N
Сообщение01.11.2023, 17:40 
mihaild Спасибо, про гомоморфизмы в $\mathbb{Q}$ не сообразил. Через базис Гамеля умею — просто каждый базисный вектор перевести в последовательность, к нему сходящуюся, и продолжить по линейности.

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group