Могу даже так

ОК. Записали уравнения Эйлера-Лагранжа.
Их будет столько, сколько степеней свободы (на каждую обощщёенную координату по одному)
И отсюда

О! Полная производная чего-то по времени равна нулю!
А значит это "что-то" - интеграл движения.
В этой записи интеграл движения - скорость (не забываем, в нащем примере случае скорость одномерная, то есть интеграл двежения один, а не три).
Можно записать такие величины

,

, и они тоже будут интегралами движения в данном примере. Но нам нужны независимые, а такой - один, но можно выбрать любой.
Итак, одна константа интегирования

- это и есть интеграл движения.