2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу 1, 2, 3  След.
 
 Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение25.08.2023, 12:36 
Заслуженный участник


24/08/12
1153
Используя каждого из чисел 1, 3, 4 и 6 ровно один раз, и операции сложения, вычитания, умножения и деления (плюс, возможно, скобок) - составить выражение которое равняется 24 (количество использованных операций и скобок может быть любым).
Задачка на время (и несколько сложнее, чем кажется. У меня при некотором "везении" получилось за 35 минут, знакомому доценту по математике из оксфорда понадобился почти час).

 Профиль  
                  
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение25.08.2023, 15:14 
Аватара пользователя


22/07/08
1416
Предместья
manul91 в сообщении #1606468 писал(а):
Задачка на время

(Оффтоп)

$(14-6)\cdot{3}$

 Профиль  
                  
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение25.08.2023, 15:28 
Заслуженный участник


24/08/12
1153
Лукомор Числа нельзя "слеплять" чтобы получать других чисел (это числа, не цифры). Задачка честная без никаких вывертов типа написания чисел и пр.
Поэтому нельзя использовать чисел типа 14, 31, 46, 143 и т.д.
Только числа 1, 3, 4 и 6 (как есть), и должны использовать каждое из них ровно один раз.
Интересно узнать время которое заняло решение.

 Профиль  
                  
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение25.08.2023, 16:05 
Заслуженный участник


12/08/10
1721
Гугл знает это :)

 Профиль  
                  
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение25.08.2023, 16:07 
Заслуженный участник


24/08/12
1153
Null Не знаю, не проверял :) Хотя гугл знает много чего, но гуглить ответы не интересно...

 Профиль  
                  
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение25.08.2023, 16:56 
Заслуженный участник
Аватара пользователя


01/09/13
4811
manul91 в сообщении #1606468 писал(а):
количество использованных операций и скобок может быть любым

Интересно, как количество бинарных операций может отличаться от трёх?...
manul91 в сообщении #1606498 писал(а):
Интересно узнать время которое заняло решение.

За 20 минут - почесал репу и написал программу :-)

 Профиль  
                  
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение25.08.2023, 17:25 
Аватара пользователя


22/07/08
1416
Предместья
manul91 в сообщении #1606498 писал(а):
Интересно узнать время которое заняло решение.

Поскольку у меня нет решения, то и времени оно не заняло... :-)

 Профиль  
                  
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение25.08.2023, 19:31 
Заслуженный участник


24/08/12
1153
Geen в сообщении #1606511 писал(а):
За 20 минут - почесал репу и написал программу
Ну, это такое... Программой перебором в лоб (с помощью машины) такие задачи не интересны. Да и нагуглить как сказали выще можно быстрее, а спросив ChatGPT можно "решить" еще быстрее, прямо "за пару секунд":)

 Профиль  
                  
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение25.08.2023, 19:49 


17/10/16
5313
manul91
$\frac{6}{1-\frac{3}{4}}$
Я потратил не меньше часа, прежде чем понял, что нужно делить на что-нибудь меньше единицы. Да, задачка не из самых простых.

 Профиль  
                  
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение25.08.2023, 19:52 
Заслуженный участник


24/08/12
1153
sergey zhukov лучше ставить правильные ответы под спойлерам (тэгом offtop) : )

 Профиль  
                  
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение25.08.2023, 20:29 
Аватара пользователя


01/11/14
2032
Principality of Galilee
sergey zhukov в сообщении #1606545 писал(а):
$\frac{6}{1-\frac{3}{4}}$
Так ведь нет операциий сложения и умножения. А по условию требуется. Или нет?
manul91 в сообщении #1606468 писал(а):
Используя каждого из чисел 1, 3, 4 и 6 ровно один раз, и операции сложения, вычитания, умножения и деления (плюс, возможно, скобок)
"Возможно", как видно, относится только к скобкам, а вот остальные операции надо использовать все?
Если нет, то как Вам такое: $1^3\cdot 4\cdot 6=24$?

 Профиль  
                  
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение25.08.2023, 21:09 
Заслуженный участник
Аватара пользователя


01/09/13
4811
manul91 в сообщении #1606542 писал(а):
Программой перебором в лоб (с помощью машины) такие задачи не интересны

Так а систематический подход подразумевает перебор вариантов в любом случае... но если задача решается простым (доли секунды) перебором, то именно так и правильно её решать :-)

 Профиль  
                  
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение26.08.2023, 09:48 
Аватара пользователя


22/07/08
1416
Предместья
manul91 в сообщении #1606498 писал(а):
Числа нельзя "слеплять"

У меня есть еще два решения, но они тоже Вам не понравятся.
Первое: $[(1+3)\cdot{4}]_6=24_6$.

Второе: $(^4_3)\cdot(^6_1)=24$

Время на эти два решения я не потратил, они мне приснились... :-)

 Профиль  
                  
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение26.08.2023, 11:03 


10/03/16
4444
Aeroport
manul91 в сообщении #1606542 писал(а):
Программой перебором в лоб (с помощью машины) такие задачи не интересны.


У нас есть четыре числа и четыре операции. Понятно, что искомое выражение - это дерево, вершины которого это числа, а ребра это операторы. Вершин должно быть 4 и они не должны повторяться.

Вопрос: по какому алгоритму строить дерево? С чего начить?

Лукомор в сообщении #1606611 писал(а):
Первое: $[(1+3)\cdot{4}]_6=24_6$.

Второе: $(^4_3)\cdot(^6_1)=24$


ИМХО: первое решение трэш, за второе я бы дал премию Филдса. У меня вылетело из головы "скобочное" обозначение числа сочетаний, а так бы я Вас опередил )))

 Профиль  
                  
 
 Re: Нумерологическая забава с чисел 1, 3, 4 и 6.
Сообщение26.08.2023, 11:09 


17/10/16
5313
ozheredov в сообщении #1606618 писал(а):
"скобочное" обозначение числа сочетаний

А... Я подумал, что это скалярное произведение векторов. Еще, думаю, и посчитано неправильно.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 31 ]  На страницу 1, 2, 3  След.

Модератор: Модераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_K


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group