Предлагаю результаты выполненной работы из области радиоэлектроники и прикладной математики. Они оформлены в виде (неопубликованной) большой статьи с названием "Гармонические дискретные спектры и аппроксимация коротких процессов, сигналов, функций". Ее полный текст (около 90 стр.) содержится на моем сайте
http://short-signal-sp.pochta.ru. Там же размещены опубликованные статьи по обозначенной теме.
Оценку новизне и полезности работы и замечания можно высказать здесь на форуме или на
kvsj3903@yandex.ru.
г. Воронеж, Дмитриев Е.В.
+++++++++++++++++++++++++
Расчет естественных гармонических дискретных спектров и аппроксимация коротких процессов, сигналов, функций
АННОТАЦИЯ
Почему считается, что спектр функции sin(Wt) на ограниченном временном интервале содержит иное, но не гармонику с частотой W ? В моих статьях, разещенных на сайте, вводится в рассмотрение новая качественная и количественная характеристика коротких процессов - "естественный спектр", состоящий из конечного оптимального набора не обязательно ортогональных гармонических составляющих. Предлагаются способы определения нового спектра. Сформулированы утверждения о возможности разложения коротких дискретных и непрерывных процессов в конечный гармонический ряд. Излагается метод эффективной аппроксимации коротких процессов, используемый при расчете нового спектра. Описываются свойства спектра, приводятся примеры.
ПРЕДИСЛОВИЕ
Областью применения полученных результатов, изложенных в статьях, является анализ сигналов в системах обработки информации. К ним могут быть отнесены системы управления, контроля и прогнозирования.
Выполненная работа относится к разработкам методов и алгоритмов анализа сигналов и колебаний. В ней предлагается новая область для исследований, касающаяся цифровой обработки непрерывных и дискретных сигналов. А именно предложен новый подход в описании и оценке параметров сигналов. Новизна заключается в рассмотрении и исследовании "естественных гармонических спектров" и гармонической аппроксимации сигналов ограниченной длительности (коротких).
В настоящее время традиционные способы определения спектров сигналов основаны на использовании разложения функций в ряды Фурье или представления их интегралами Фурье с применением системы базисных ортогональных функций. Однако эти способы не эффективны для определенных типов сигналов (можно сказать даже для многих), тем более для коротких сигналов.
Тем не менее, насколько известно, до настоящего времени новые подходы в решении проблемы определения спектра коротких сигналов не рассматривались и в практическом плане не решались. Во всяком случае, среди опубликованных, работы по данной тематике отсутствуют.
В моих статьях обсуждаются принципиальные возможности эффективной гармонической аппроксимации и определения гармонических спектров коротких сигналов. Впервые предлагается новый метод спектрального анализа и аппроксимации аналоговых и дискретных сигналов ограниченной длительности. Для этого вводятся новые понятия: частичный естественный спектр (ЧЕ-спектр) и полный естественный спектр (ПЕ-спектр) отрезка процесса, содержащие усеченный и полный (но ограниченный) набор гармоник соответственно. Причем требование взаимной ортогональности на наборы гармоник не накладывается. Предлагаются алгоритмы расчета спектров, пригодные для практической реализации нового метода.
Выполненная работа основана на результатах изучения, анализа, расчета новых естественных спектров и исследования их свойств.
В ней в доступной форме изложена элементарная теория анализа коротких сигналов, общий подход по определению их гармонических спектров. Рассматриваются особенности обработки коротких сигналов. Выявлены аспекты, полезные для синтеза и реализации алгоритмов обработки коротких сигналов с целью определения параметров их спектра. В результате проведенных исследований получены оригинальные результаты.
Дается общий обзор основных среди известных методов определения спектров сигналов. Сравниваются свойства и характеристики новых ЧЕ- и ПЕ-спектров и спектров на основе традиционных разложений Фурье. Проведен их сопоставительный анализ.
Приводится ряд конкретных приложений нового метода анализа и обработки непрерывных и дискретных сигналов ограниченной длительности. Приводятся результаты проведенных исследований в виде численных расчетов на ЭВМ спектров для различных сигналов. ЧЕ- и ПЕ-спектры и спектры с использованием других известных методов (для сравнения) представлены в виде графических зависимостей, построенных по результатам расчетов. Это дает возможность наглядно оценить практические результаты проведенных исследований.
Сформулированы проблемы, подлежащие решению в настоящее время. Основной из них является разработка аналитических или более эффективных численных методов определения нового спектра. Необходимо отметить, что практическая реализация многих из предложенных алгоритмов в большой степени зависит от успехов в области увеличения производительности применяемой вычислительной техники.
Выполненная работа также имеет отчасти постановочный характер. Даны предложения и указаны направления по дальнейшим теоретическим и практическим исследованиям. Ряд важных проблем лишь затронут в работе и ждет дальнейшего развития и детальной разработки. Следует отметить, что многие вопросы, интересные для построения эффективных методов расчета гармонических спектров коротких сигналов, остались не рассмотренными. Имеющиеся "белые пятна" должны послужить стимулом для дальнейшего продолжения начатых и проведенных научных исследований.
Результаты работы могут быть использованы при обработке экспериментальных данных с целью выделения из них периодических компонент. Например, при исследовании экономических, природных, биологических циклических и колебательных процессов. Есть надежда, что работа в целом побудит интерес специалистов к проблеме определения спектров коротких сигналов.
Изложенные статьи могут вызвать интерес у специалистов по прикладной математике. Они ознакомят с новым нетрадиционным подходом к аппроксимации (гармонической или с использованием других систем базисных функций) коротких сигналов и к определению их спектрального разложения.
ВВЕДЕНИЕ
Всегда ли полезно аппроксимировать конечный отрезок функции или процесса интегралом или рядом Фурье? Почему считается, что общепринятый спектр функции sin(2pi*f*t) на ограниченном временном интервале содержит иное, но не гармонику с частотой f, что было бы более очевидным?
Выполненная работа посвящена введению в рассмотрение, изучению, применению и методам расчета нового типа спектра - спектра коротких сигналов (ЧЕ- и ПЕ-спектра), состоящего из набора не обязательно ортогональных гармонических составляющих. Свойства спектра, вытекающие из данного ему определения, а также обнаруженные в результате проведенных исследований, являются основополагающими. Обсуждаются достоинства и недостатки предложенного спектра, приводятся способы его определения.
Показывается, что традиционные спектры сигналов, получаемые с использованием интегралов, рядов Фурье и дискретного преобразования Фурье являются значительно избыточными для описания коротких сигналов. А для некоторых сигналов они являются частными случаями нового "естественного" спектра. При увеличении длительности сигнала упомянутые спектры Фурье приближаются к новому спектру, рассчитанному для любой исходной длительности. Процедура определения параметров гармоник нового спектра является нелинейной операцией над значениями сигнала, как функции времени. Но одновременно она есть линейное преобразование амплитуд и фаз спектральных составляющих сигнала. При использовании методов Фурье наоборот: параметры гармоник спектра являются линейными функциями от значений сигнала, но при этом параметры трансформируются в пересчитанном спектре нелинейным образом.
Рассматривается и в общем виде решается задача выделения полезного сигнала из принятого путем представления его аппроксимирующей функцией, параметрами которой являются параметры нового спектра.
Использование нового "естественного" спектра и его свойств позволяет более эффективно и успешно решать задачи цифровой обработки процессов и отдельных сигналов. Предлагается метод определения гармонических составляющих сигнала, в том числе в заданном диапазоне частот, по результатам расчета нового спектра. Рассматриваются вопросы применения нового спектра для обнаружения и различения сигналов, для фильтрации и преобразования сигналов, для аппроксимации, интерполяции и экстраполяции колебательных и апериодических процессов. Приводятся результаты расчёта нового спектра для некоторых конкретных сигналов.
Дмитриев
kvsj3903@yandex.ru
http://short-signal-sp.pochta.ru