Здравствуйте,
пусть у меня дана функция от двух переменных вида

Будем называть множество точек с локальным экстремумом 

, для которых эта функция из этой точки будет иметь такой вектор направления 

, вдоль которого эта точка является локальным экстремумом этой функции, и мне нужно найти минимальное значение 

 (и соответсвующий угол альфа), для которого имеется такой локальный экстремум.
Я понимаю, что что-то делаю не так, но не нашел быстро у себя ошибку. Я пробую посчитать производную 

 по 

, приравнять ее к нулю, и одновременно потребовать, чтобы 

 в этой точке у меня было равно нулю, то есть

но получается, что

то есть для любой 

 существует 

, при которой это происходит, но ведь это не верное утверждение.
Скажите, пожалуйста, что я делаю не так?