2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Old Numbert Th Problem No1
Сообщение24.03.2023, 16:32 
For which the natural numbers $n$ number $5^n+n^5$ is divisible by 13? Which is the smallest such $n$?

 
 
 
 Re: Old Numbert Th Problem No1
Сообщение24.03.2023, 16:54 
$5^n \mod 13$ has period 4 and values $(5, 12, 8, 1)$.
$n^5 \mod 13$ has period 13 and values $(1,    6,    9,   10,    5,   2,   11,    8,    3,    4,    7,   12,    0)$.

 
 
 
 Re: Old Numbert Th Problem No1
Сообщение24.03.2023, 18:22 
In $(5, 12, 8, 1)$:
1:5 matches 8:8 - $n=21+52k$, smallest $n=21$
2:12 matches 1:1 - $n=14+52k$, smallest $n=14$
3:8 matches 5:5 - $n=31+52k$, smallest $n=31$
4:1 matches 12:12 - $n=12+52k$, smallest $n=12$

The smallest $n=12$.

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group