Спасибо!
Я думал над этим, но вот это обстоятельство:
PAV писал(а):
Разумеется, таблица квантилей тут нужна своя.
мешает. Т.е. тут нужно вычислить что-то вроде поправок Лиллиефорса для критерия согласия Колмогорова. Можно, конечно, попытаться сделать это самостоятельно, методом Монте-Карло...
PAV писал(а):
Важно только отметить, что тот подход, который я только что описал, использует предположение о существовании среднего и дисперсии.
Строго говоря, тут даже предположение о случайности данных (не говоря уже, например, о независимости результатов последовательных измрений в одной выборке) вызывает большие сомнения
Вопрос возник из практической задачи: есть измерения одного и того же физ. параметра (число зарегистрированных гамма-квантов либо вторичных нейтронов либо чего-либо ещё) в двух скважинах, расположенных на одном месторождении (т.н. нейтронный или гамма-каротаж). Каротажи произведены давно, поверки приборов и условия измерения утеряны. Качество таких данных считается плохим. Однако это всё, что у нас есть (условия измерений сейчас уже другие, да и дорого они обходятся). Очень хочется использовать то, что есть, используя то обстоятельство, что каротажи проведены в большом числе скважин.
Для этого каждое измерение рассматривается как случайная выборка из одной и той же, общей для всех измерений, генеральной совокупности, но подвергшаяся своему систематическому искажению (которое за неимением лучшей идеи мы считаем линейным). Если эта гипотеза окажется верной (что мы и хотим проверить), то вид функции распределения для этой генеральной совокупности мы сможем восстановить (с точностью до лин. преобразования), а затем все измерения нормировать по мат. ожиданию и дисперсии этой совокупности, повышая тем самым точность каждого исследования. Затем мы уже можем сравнить уточнённые (нормированные) данные по разным скважинам, выявляя какие-то особенности, корреляции и т.п.