Padawan писал(а):
1.Доказать, что множества всех действительных чисел и неотрицательных действительных чисел не гомеоморфны.
2.Гомеоморфны ли множества всех рациональных чисел и неотрицательных рациональных чисел?
Я так понимаю топология обычная, тогда в ней открытый интервал и полуинтервал не гомеоморфны, а вся вещественная прямая гомеоморфна открытому интервалу, а весь луч неотрицательных вещественных чисел, гомеоморфен полуинтервалу, а значит между собой они не гомеоморфны.
а второй пункт, как правильно заметил Руст, очевидно следует из того, что если предположить наличие гомеоморфизма, то он продолжается и на пополнение, а там из пункта один видно, что его не существует, значит и здесь не существует.
Вроде бы так получается.