2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 сопротивление !!!
Сообщение04.07.2008, 17:38 
Аватара пользователя
Определение сопротивление между точками A и B бесконечной цеплочки, собранной из резисторов с сопротивленями R_0= R  , R_1= R_0 \alphaand R_n= R_0 (\alpha)^n
Посмотрим внизу:

A-----------------R_o-------------------R_1------------- |------------------
! 000000000000 ! oooooooooooooo !
! 00000000000 ! 0000000000000 !
R_o 0000000000 R_1 000000000000 R_2
! 0000000000 ! 0000000000000 !
B - -|------------------------|-----------------------------------------------
PS: i can't know how upload picture on site.
signal :0 and ! haven't value, and ! это нить имеет элек.ток

 
 
 
 
Сообщение04.07.2008, 23:11 
Аватара пользователя
daogiauvang
Баян! :D Точно помню эта задача есть в сборнике задач Московских Физических олимпиад. Правда я ее еще где то видел, но уже не помню где. :wink:

 
 
 
 
Сообщение05.07.2008, 11:10 
Аватара пользователя
Хет Зиф писал(а):
daogiauvang
Баян! :D Точно помню эта задача есть в сборнике задач Московских Физических олимпиад. Правда я ее еще где то видел, но уже не помню где. :wink:

это задача всероссийкой студенческой олимпиады по Физике 2006 или 2005
Я не помню точно

Добавлено спустя 1 час 24 минуты 35 секунд:

daogiauvang писал(а):
Хет Зиф писал(а):
daogiauvang
Баян! :D Точно помню эта задача есть в сборнике задач Московских Физических олимпиад. Правда я ее еще где то видел, но уже не помню где. :wink:

это задача всероссийкой студенческой олимпиады по Физике 2006 или 2005
Я не помню точно

я считал два корня,
R=  ( \sqrt{4+\alpha^2} -(2-\alpha))/ 2\alpha и
R=  (\sqrt{4+\alpha^2} +(2-\alpha))/(2\alpha)
но я уже не знал то что мне надо выбрать какой корень ?
PS: Ответ в журнале Квант Номер:3-2006:
R=  (\sqrt{2+\alpha^2} -(2-\alpha))/(2\alpha)
помогите мне

 
 
 
 
Сообщение05.07.2008, 16:35 
Аватара пользователя
daogiauvang
Неужели есть Всероссийская студенческая олимпиада по физике?
Что-то легкие задачи не ней :wink:
Не знаю откуда у вас эти ответы, которые вы забыли еще умножить на $R_{0}$.
Все решается очень просто главная идея это то что $R_{AB}=\alpha R_{A'B'}$. Откуда получается сразу уравнение:
$$\frac{1}{R_{0}+\alpha x}+\frac{1}{R_{0}}=\frac{1}{x}$$
У него два решения, но одно просто отрицаетльное, следовательно остается лишь:
$$R_{AB}= \frac{\sqrt{4+\alpha ^2}-(2-\alpha)}{2\alpha}R_{0}$$. Этот ответ похож на ответ из кванта если бы в кванте не стояла 2 -ка под корнем, ну я подозреваю что это чья - то опечатка. :wink:

 
 
 
 
Сообщение05.07.2008, 19:19 
Аватара пользователя
Хет Зиф писал(а):
daogiauvang
Неужели есть Всероссийская студенческая олимпиада по физике?
Что-то легкие задачи не ней :wink:
Не знаю откуда у вас эти ответы, которые вы забыли еще умножить на $R_{0}$.
Все решается очень просто главная идея это то что $R_{AB}=\alpha R_{A'B'}$. Откуда получается сразу уравнение:
$$\frac{1}{R_{0}+\alpha x}+\frac{1}{R_{0}}=\frac{1}{x}$$
У него два решения, но одно просто отрицаетльное, следовательно остается лишь:
$$R_{AB}= \frac{\sqrt{4+\alpha ^2}-(2-\alpha)}{2\alpha}R_{0}$$. Этот ответ похож на ответ из кванта если бы в кванте не стояла 2 -ка под корнем, ну я подозреваю что это чья - то опечатка. :wink:

спасибо но В Кванте есть эти задачи
Если не веришь еще смотри в этом журнале номер 3/2006.ст 52и ответ не точною
Да, правильно я забыл умножить на R_o
Почему остальный корень отрицательный???

 
 
 
 
Сообщение06.07.2008, 10:23 
Аватара пользователя
daogiauvang
Я верю что в кванте они есть :wink:
Корень отрицательный потому что :
$\frac{\alpha-2-\sqrt{4+\alpha ^2}}{2\alpha}<0$
:wink:

 
 
 
 
Сообщение06.07.2008, 12:08 
Аватара пользователя
Хет Зиф писал(а):
daogiauvang
Я верю что в кванте они есть :wink:
Корень отрицательный потому что :
$\frac{\alpha-2-\sqrt{4+\alpha ^2}}{2\alpha}<0$
:wink:

у меня была ошибка когда решил квадратное равенство.

 
 
 [ Сообщений: 7 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group