Никто же не обещал, что вложение будет единственным, верно?
Если у нас есть порядок - то будет. Потому что
![$\mathbb Q$ $\mathbb Q$](https://dxdy-04.korotkov.co.uk/f/b/d/b/bdbd92626a92a3c147815182b3c9ff2d82.png)
определяется через арифметические операции, и с помощью порядка позволяет отличить любые два элемента друг от друга из-за архимедовости.
Если добавить словосочетание "линейно упорядоченное", то я думаю достаточно.
Вроде архимедовость формулируется только для линейно упорядоченных полей.
У нас есть две структуры:
![$A$ $A$](https://dxdy-02.korotkov.co.uk/f/5/3/d/53d147e7f3fe6e47ee05b88b166bd3f682.png)
- линейно упорядоченное поле, для которого выполнена аксиома Архимеда и
![$B$ $B$](https://dxdy-03.korotkov.co.uk/f/6/1/e/61e84f854bc6258d4108d08d4c4a085282.png)
- счетное линейно упорядоченное множество.
Есть
![$\mathbb R$ $\mathbb R$](https://dxdy-04.korotkov.co.uk/f/b/c/0/bc0baa1bd1772406881ea71a3524054d82.png)
- любая структура
![$A$ $A$](https://dxdy-02.korotkov.co.uk/f/5/3/d/53d147e7f3fe6e47ee05b88b166bd3f682.png)
в него вкладывается (1), и если
![$\mathbb R$ $\mathbb R$](https://dxdy-04.korotkov.co.uk/f/b/c/0/bc0baa1bd1772406881ea71a3524054d82.png)
вкладывается в структуру
![$A$ $A$](https://dxdy-02.korotkov.co.uk/f/5/3/d/53d147e7f3fe6e47ee05b88b166bd3f682.png)
, то вложение - изоморфизм (2).
Есть
![$\mathbb Q$ $\mathbb Q$](https://dxdy-04.korotkov.co.uk/f/b/d/b/bdbd92626a92a3c147815182b3c9ff2d82.png)
- любая структура
![$B$ $B$](https://dxdy-03.korotkov.co.uk/f/6/1/e/61e84f854bc6258d4108d08d4c4a085282.png)
в него вкладывается (1'), но
![$\mathbb Q$ $\mathbb Q$](https://dxdy-04.korotkov.co.uk/f/b/d/b/bdbd92626a92a3c147815182b3c9ff2d82.png)
может неизоморфно вкладываться в структуру
![$B$ $B$](https://dxdy-03.korotkov.co.uk/f/6/1/e/61e84f854bc6258d4108d08d4c4a085282.png)
(не-2').
Просто из (1), не вдаваясь в детали внутреннего устройства
![$A$ $A$](https://dxdy-02.korotkov.co.uk/f/5/3/d/53d147e7f3fe6e47ee05b88b166bd3f682.png)
, вывести (2) нельзя, иначе из (1') можно было бы вывести (2').