2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему
 
 Непонятная задача по школьной тригонометрии.
Сообщение17.08.2022, 22:47 


17/08/22
2
Всем привет! Помогите решить школьную задачу по тригонометрии. Мы потратили несколько часов. Сама задача:
$\frac{4\cdot\sin(17^\circ)\cdot\cos(17^\circ)\cdot(2\cdot\cos(51^\circ)\cdot\cos(17^\circ) - \sin(34^\circ))}{\sin(104^\circ) - \sin(34^\circ)}$

Выражение в скобках не поддаётся никаким преобразованиям, а именно перемноженные косинусы. Ни формула формула двойного аргумента, ни преобразование произведения в сумму, ни преобразование суммы в произведение. Всё время прихожу в тупик с повторяющимися выражениями. Может дело в формулах приведения? Но я их погонял немного и результата я так и не получил. Ответ к задаче: 1, но вот как его получить? Может здесь многочлен какой-нибудь должен появиться? У меня ноль идей.




P.S. Возможно в задаче очепятка, но мы не уверены. Название учебника:
алгебра и начала математического анализа 10-11 универсальный многоуровневый сборник задач. Авторы: Ященко И.В., С.А. Шестаков. Раздел 1.4, номер С1
Заранее благодарю.

 Профиль  
                  
 
 Posted automatically
Сообщение17.08.2022, 22:54 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
по следующим причинам:

- отсутствуют собственные содержательные попытки решения задачи;
- заодно можно и градусы поправить (делается это примерно так - 30^\circ).

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 Профиль  
                  
 
 Posted automatically
Сообщение17.08.2022, 23:48 
Заслуженный участник


09/05/12
25179
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»


-- 17.08.2022, 23:59 --

Orlando в сообщении #1562974 писал(а):
P.S. Возможно в задаче очепятка, но мы не уверены.
Ну это-то как раз легко проверить, сосчитав значение выражения на калькуляторе. Да, с ответом оно не совпадает.

Все аргументы, кроме одного в знаменателе (и там почти наверняка опечатка), кратны $17^\circ$. Это стоило бы использовать, если бы условие было корректным.

 Профиль  
                  
 
 Re: Непонятная задача по школьной тригонометрии.
Сообщение18.08.2022, 03:02 
Заслуженный участник


09/05/13
8904
∞⠀⠀⠀⠀
Orlando
В знаменателе $104$ на $102$ исправьте. Будет Вам единица. Все остальное останавливать не должно.

 Профиль  
                  
 
 Re: Непонятная задача по школьной тригонометрии.
Сообщение18.08.2022, 09:04 
Заслуженный участник


20/12/10
9150
Otta в сообщении #1562989 писал(а):
В знаменателе $104$ на $102$ исправьте.
Не только. Нужно еще в числителе $\sin{34^\circ}$ заменить на $\cos{34^\circ}$. И тогда все превратится в тождество с многочленами Чебышева.

 Профиль  
                  
 
 Re: Непонятная задача по школьной тригонометрии.
Сообщение18.08.2022, 09:56 
Заслуженный участник


11/05/08
32166
nnosipov в сообщении #1562994 писал(а):
И тогда все превратится в тождество с многочленами Чебышева.

Только при чём тут Чебышёв, если это банальная тригонометрия:
$$\frac{4\cdot\sin(17^\circ)\cdot\cos(17^\circ)\cdot(2\cdot\cos(51^\circ)\cdot\cos(17^\circ) - \cos(34^\circ))}{\sin(102^\circ) - \sin(34^\circ)}=$$
$$=\frac{2\sin(34^\circ)\cdot\cos(68^\circ)}{2\sin(34^\circ) - 4\sin^3(34^\circ)}=\frac{\cos(68^\circ)}{1 - 2\sin^2(34^\circ)}=1$$
(не считая того, что синус тройного угла знают не все).

 Профиль  
                  
 
 Re: Непонятная задача по школьной тригонометрии.
Сообщение18.08.2022, 10:19 
Заслуженный участник
Аватара пользователя


13/08/08
14496
Уж заменять так заменять:
$\dfrac{4\cdot\sin a\cdot\cos a\cdot(2\cdot\cos 3a\cdot\cos a- \cos 2a)}{\sin 6a - \sin 2a}=$
Смотрим... Смотрим И видим чюдо!

 Профиль  
                  
 
 Re: Непонятная задача по школьной тригонометрии.
Сообщение18.08.2022, 10:20 
Заслуженный участник


20/12/10
9150
ewert в сообщении #1562995 писал(а):
Только при чём тут Чебышёв
А как я опечатку нашел? И потом, Вы совсем не думаете об авторах подобных задач, они же должны их как-то придумывать. А это самый простой способ (взять тождество с многочленами и подставить туда синусы/косинусы). Для более изысканных случаев есть суммы Гаусса, но это для олимпиад, а здесь ЕГЭ.
ewert в сообщении #1562995 писал(а):
банальная тригонометрия
Она же алгебра (многочленов).

-- Чт авг 18, 2022 14:23:13 --

gris в сообщении #1562996 писал(а):
И видим чюдо!
Да ладно! Чудо --- это подобная книжка без опечаток.

 Профиль  
                  
 
 Re: Непонятная задача по школьной тригонометрии.
Сообщение18.08.2022, 11:14 
Заслуженный участник
Аватара пользователя


23/08/07
5501
Нов-ск
ewert в сообщении #1562995 писал(а):
(не считая того, что синус тройного угла знают не все).

Кто не знает синус тройного, решит быстрее
$$\sin(102^\circ) - \sin(34^\circ)= \sin(68^\circ+34^\circ) - \sin(68^\circ-34^\circ)=2\sin(34^\circ)\cdot\cos(68^\circ)$$

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 9 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group