2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Задачка про спутники
Сообщение01.07.2022, 04:58 
Аватара пользователя
Пока готовил задачи первого тура всеамериканской Олимпиады, наткнулся на одну, которая обратила на себя мое пристальное внимание.
Пусть у нас вокруг планеты вращаются два спутника.
В какой-то момент они оба находятся на расстоянии $a$ От планеты. Причём первый спутник имеет скорость $v_0$ и вращается по круговой орбите. А второй спутник имеет в этой же точке скорость $\frac{1}{2}v_0$ и это точка его максимального удаления от планеты.
Найти минимальное расстояние этого спутника от планеты.

(условие от меня лично)

надо уложиться в 3 минуты

 
 
 
 Re: Задачка про спутники
Сообщение01.07.2022, 07:47 
Аватара пользователя

(Оффтоп)

Вроде, получается $r_{\min}=\dfrac{a}{7}$. В предположении, что $a$ обозначает расстояние от спутника до центра планеты.
(Вот только в 3 минуты я не уложился. Вообще, решать "на скорость" не умею, да и не люблю :-( )

 
 
 
 Re: Задачка про спутники
Сообщение01.07.2022, 08:00 
Аватара пользователя
Mihr
Ответ правильный, но скорее всего путь вы выбрали длинный, раз не уложились в 3 минуты.
На этой олимпиаде школьникам даётся 75 минут на 25 задач.
Правда эта была самая нетривиальная.
Подсказка. Надо кое что знать или уметь применить про эллиптические орбиты в этой задаче.
Я ее раньше тоже решал через энергии и угловые моменты. И это конечно не три минуты.

 
 
 
 Re: Задачка про спутники
Сообщение01.07.2022, 09:09 
Аватара пользователя
fred1996 в сообщении #1558988 писал(а):
Надо кое что знать или уметь применить про эллиптические орбиты в этой задаче.

Заинтриговали. Подумаю ещё. Надеюсь, обсуждение задачи будет, и Вы раскроете свой "секрет". Но не торопитесь с этим, дайте подумать.

-- 01.07.2022, 09:20 --

Можно вывести отношение секториальных скоростей двух спутников двумя способами: через их скорости в указанный (начальный) момент времени и через эксцентриситет эллиптической орбиты 2-го спутника. Приравняв эти выражения, находим искомый эксцентриситет: он оказывается равным $\varepsilon=\dfrac{3}{4}$. Отсюда и находится минимальное расстояние от 2-го спутника до центра планеты. Рекомендуемое Вами решение похоже на это? :roll:

 
 
 
 Re: Задачка про спутники
Сообщение01.07.2022, 09:51 
Аватара пользователя
Mihr
Нет. У меня попроще. Без $\varepsilon$

 
 
 
 Re: Задачка про спутники
Сообщение01.07.2022, 09:56 

(Спойлер)

Стандартный способ - использование интеграла энергии в виде $v^2 = GM\,\left(\frac{2}{a}-\frac{1}{a_0}\right)$, где $a_0$ - это большая полуось (обозначения в условии неудобные). В подходящих единицах отсюда $\frac{1}{4}=\left(2-\frac{1}{a_0}\right)$, откуда $a_0=4/7$ и $r_\pi=1/7$.

 
 
 
 Re: Задачка про спутники
Сообщение01.07.2022, 10:59 
Аватара пользователя
Pphantom

(мое решение)

Ну да, я использовал похожее соображение.
Полная энергия ведь зависит только от большой полуоси:
$E=-G\frac{mM}{2a}$
Для круговой орбиты первого спутника потенциальная энергия $P=-G\frac{mM}{a}$, кинетическая энергия $K=G\frac{mM}{2a}$
Для второго же спутника в той же точке потенциальная энергия та же, но кинетическая энергия в 4 раза меньше. То есть $G\frac{mM}{8a}$
То есть полная будет $-\frac{7}{8}G\frac{mM}{a}$.
Но с другой стороны она равна $-G\frac{mM}{a+b}$, где $b$ - минимальное расстояние. Отсюда сразу следует ответ:
$b=\frac{1}{7}a$

 
 
 
 Re: Задачка про спутники
Сообщение01.07.2022, 12:14 
fred1996, ну да, просто изложенный выше прием - типовой.

 
 
 
 Re: Задачка про спутники
Сообщение31.10.2022, 23:46 
Аватара пользователя
fred1996
Т.е. нужно какие-то факты, завязанные на оси знать? А без этого? :roll:
У меня вышло так - сведем задачу к одномерной, перейдя в систему отсчета радиуса-вектора, тогда на первый спутник действуют уравновешивающие силы $\frac{GMm}{{a_0}^2}=\frac{L^2}{{a_0}^3}$, а для второго спутникника уравновешивающая сила будет в точке $\frac{GMm}{r_0^2}=\frac{L^2}{4{r_0}^3}$, $r_0=\frac{1}{4}a_0$
Надо найти корень $r$ из $\frac{GMm}{r}-\frac{L^2}{8r^2}=\frac{GMm}{a_0}-\frac{L^2}{8{a_0}^2}$, отличный от $a_0$. Из равенства выше $\frac{1}{4}L^2={r_0}GMm$, и приняв за единицу $r_0$, получаем $\frac{1}{r}-\frac{1}{2r^2}=\frac{1}{4}-\frac{1}{2\cdot4^2}$, корни у него $r=4,\frac{4}{7}$, нам нужен второй корень, поэтому $r=\frac{4}{7}\cdot \frac{1}{4} a_0=\frac{a_0}{7}$

 
 
 [ Сообщений: 9 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group