Вот если будут получаться не разные, а одинаковые, то модель работает.
я имел в виду, как это заранее предсказать. Например, зная микро-динамику частиц, как предсказать, что на макроуровне такие величины будут существовать? Ну наподобие выводов макровеличин и законов термодинамики из стат. физики.
почему можно переходить к
и/или к
для того, чтобы в качестве модели (видимо) юзать систему дифференциальных уравнений. Перешли -> простроили модель -> погоняли модель, сравнив предсказываемые ею величины с их реальными значениями. Если точность устроила, значит все сделано правильно. Если нет - обычно очень легко отдетектить неадекватность модели, связанную с нехорошим поведением параметров при стремлении к нулю времен, площадей (в Вашем случае) и объемов. Философия тут на фик не нужна.
Это эмпирический подход, который имеет свои недостатки в том числе, что вы никогда не сможете верифицировать такую модель (для верификации нужны теоретические соображения).
Вы имеете в виду "независимая от формы стремящегося к нулю элемента объема"?
я имею в виду, почему предел существует (то есть, существует такое значение, что какие бы последовательности уменьшающихся дельт не брали, отношения будут все ближе и ближе подходить к какому-то одному значению).
"Оказалось работоспособной" - слишком поверхностный взгляд на вещи. Хотелось бы знать, откуда ноги растут. Непрерывность многих моделей, как я понимаю, естественно вытекают из постулатов непрерывности пространства-времени. А вот в случае систем из многих частиц, каким образом возникает нечто непрерывное на макроуровне, как в случае с газами , жидкостями и транспортными потоками - для меня на данный момент непонятно.