2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Сюрреальные числа Конвея
Сообщение09.10.2021, 14:41 
Вот есть классический матанализ. В его основе лежит $\mathbb{R}$. Расширить $\mathbb{R}$ без потери каких-либо свойств нельзя, но если пожертвовать, например, порядком (и его согласованностью с операциями), то можно расширить до $\mathbb{C}$. Я понимаю так, что основная причина успеха комплексного анализа заключается в том, что $\mathbb{C}$ хороши с алгебраической точки зрения. Т.е. там, где есть хорошая алгебра, не может быть плохого анализа.

Но расширять $\mathbb{R}$ в теории можно в разные стороны, например от архимедовости. И сюрреальные числа выглядят неплохим кандидатом. Иными словами, вдруг классический матанализ сложный потому, что лежащие в его основе действительные числа слишком просты. Они просто "не видят" вещи, которые увидела бы более сложная конструкция. А я бы, например, с радостью бы усложнил основание, чтобы упростилась сама теория.

Кто что думает по поводу этих чисел? Есть ли какие-нибудь действительно содержательные примеры применения их для решения задач классического анализа и смежных с ним разделов?

 
 
 
 Re: Сюрреальные числа Конвея
Сообщение09.10.2021, 15:05 
Конструкция, по-моему, интересная, но применений у них нет.

 
 
 
 Re: Сюрреальные числа Конвея
Сообщение09.10.2021, 15:32 
Аватара пользователя
Slav-27 в сообщении #1534384 писал(а):
но применений у них нет.
Под восьмым номером там какая-то работа со словами в заголовке «univalent foundations», ну, то есть, типа с претензиями.

 
 
 
 Re: Сюрреальные числа Конвея
Сообщение09.10.2021, 15:44 
Конвей замечательный, обожаю его, и претензий у него, естественно, не было.
А этот гражданин, по-видимому, общественно опасен.

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group