На самом деле в совремённых курсах диф.геометрии фактически дифференцирования (алгебра Ли дифференцирований) определяется аксиоматически, как линейные операторы удовлетворяющие правиле Лейбница для произведения. Я как то обобщил эту конструкцию так, что все встречающиеся непрерывные структуры (типа топологий, гладких структур и т.д.) определяются двойственным образом к алгебраическим структурам. Упрощённно говоря алгебраическая структура на категории множеств определяется заданием для каждого элемента (объекта) Х множеством отображений из элементов некоторой маленькой подкатегории. Для простоты рассмотрим, когда эта подкатегория состоит из единственного множества А. Соответственно на X определяется алгебраическая структура заданием некоторого множества
отображений из А в Х, соответственно на Y заданием
. Отображение
сохраняет структуру (или гомоморфизм), если для любого
отображение
(я использовал ковариантную запись для произведения, обычно употребляют контравариантную запись и пишут
вместо написанного. Это можно считать категорией сохраняющей отношения на объектах. Можно определить категории сохраняющие операции, операции и тождества, т.е. теорию универсальных алгебр можно изложить на языке теории категорий. Непрерывные структуры, можно определить как объекты с множеством
отображений
и отображение
непрерывно (гомоморфизм), если для любого
отбражение
. Т.е. непрерывные структуры определяются полностью двойственно к алгебраическим структурам. Отличия появляются только из-за того, что мы работаем с не самодвойственной категорией множеств.
Что касается теоремы Ролля, она к этому не имеет отношения, теорема есть следствие теоремы о принятии промежуточного значения функции f'(x), т.е. свойство полноты R. К тому же имеется множество пополнений Q, и выделять только архимедово старомодно и надо работать со всеми, т.е. с аделями.
, не могли бы вы пояснить, как с помощью вашей конструкции задать, скажем, категорию полугрупп? Какую малую категорию следует взять в этом случае?