2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Ручные и дикие автоморфизмы
Сообщение23.04.2021, 05:45 


31/01/20
51
Ручные автоморфизмы это такие, которые можно представить в виде композиции элементарных.
P.S $(x_{1}...x_{n}) \to (x_{1},...,x_{s-1}, axs + f(x_{1},...,x_{s-1},x_{s+1},...x_{n}),x_{s+1},...x_{n})  $- s-ый элементарный автоморфизм, остальные называют дикими.

Известно, что группа $AutK[x,y]$ состоит из ручных автоморфизмов, причем для любого поля, но например в $Autk[x,y,z]$ встречаются уже "дикие" автоморфизмы.
Например: автоморфизм Нагаты $(x,y,z) \to (x+(x^2 -yz)z , y+2(x^2 - yz)x + (x^2-yz)z , z)$.

У меня вопрос: есть ли подобны результаты для $n>3$ ну например придуманы подобные "дикие" автоморфизмы или доказано что все ручные?
Мне не очень важна общность, как выше. Интересны даже случаи, когда $K=\mathbb{Q}$.

 Профиль  
                  
 
 Re: Ручные и дикие автоморфизмы
Сообщение23.04.2021, 16:26 
Заслуженный участник


12/08/10
1694
Можно же просто взять автоморфизм $(x,y,z,t_1, \dots, t_{n-3}) \to (x+(x^2 -yz)z , y+2(x^2 - yz)x + (x^2-yz)z , z, t_1, \dots, t_{n-3})$?

 Профиль  
                  
 
 Re: Ручные и дикие автоморфизмы
Сообщение24.04.2021, 12:18 
Заслуженный участник


18/01/15
3263
Null
Такая конструкция (присоединение в конце нескольких переменных, которые ни в чем не участвуют), если ее применить к ручному автоморфизму, дает ручной (очевидно). Но то, что для дикого автоморфизма будет получаться дикий, ниоткуда не следует. В самом деле, почему бы не быть такому, что какие-то элементарные автоморфизмы "зацепляют" хвостовые переменные, а их произведение --- нет ? (Я не знаю, если что, возможно это или нет на самом деле.)

 Профиль  
                  
 
 Re: Ручные и дикие автоморфизмы
Сообщение25.04.2021, 03:02 


31/01/20
51
А по по поводу того, что все автоморфизмы $K[x,y]$ ручные по сути же следует из того, что вторая группа Кремоны задается с помощью образующих и соотношений, т.е любой ее элемент это композиция мономинальных автоморфизмов?
Но известно, что $Cr_{3}(K(x,y))$ не конечно порождена, тогда мб это и объясняет существование диких автоморфизмов в $K[x,y,z]$.

 Профиль  
                  
 
 Re: Ручные и дикие автоморфизмы
Сообщение13.05.2021, 05:13 


31/01/20
51
vpb в сообщении #1515508 писал(а):
Можно же просто взять автоморфизм $(x,y,z,t_1, \dots, t_{n-3}) \to (x+(x^2 -yz)z , y+2(x^2 - yz)x + (x^2-yz)z , z, t_1, \dots, t_{n-3})$?

vpb в сообщении #1515508 писал(а):
Но то, что для дикого автоморфизма будет получаться дикий, ниоткуда не следует.


Он, кстати, как раз и окажется ручным(вот статья с доказательством https://core.ac.uk/download/pdf/82725618.pdf). Тогда нужные мне дикие автоморфизмы совсем неочевидные...
Может есть какой-нибудь прием "похитрее" чтобы получать из дикого в $\mathbb{Z}[x_{1},...,x_{n}]$ автоморфизма дикий в $\mathbb{Z}[x_{1},...,x_{>n}]$?

А есть ли сейчас более-менее общие техники проверки на дикость автоморфизмов в $K[x,y,z]$?

 Профиль  
                  
 
 Re: Ручные и дикие автоморфизмы
Сообщение14.05.2021, 18:50 
Заслуженный участник


18/01/15
3263
GYNJ в сообщении #1518380 писал(а):
А есть ли сейчас более-менее общие техники проверки на дикость автоморфизмов в $K[x,y,z]$?
Не знаю. Коммутативная алгебра --- это вообще не моя область (алгебра весьма велика). (А отвечаю потому, что вы меня процитировали и тем самым как бы и вопрос задали.)

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 6 ] 

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group