2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 формула из СТО (из преобразований Лоренца)
Сообщение11.01.2021, 23:26 
Здравствуйте!
Я вечерком расписывал ручку и вывел красивую формулу в специальной теории относительности, но нигде ни чего подобного не нашёл.
подскажите пожалуйста, как она называется и где о ней почитать поподробнее?
и какой вообще смысл в том, что суммы координат в разных ИСО пропорциональны скорости?
только если что-то не так, не ругайтесь, я инженер по отоплению и вентиляции и в алгебре ничего не понимаю

(\textit{t} + \textit{x})\textit{e}^{-\beta} = (t + x) e^{ii\beta} =

= (\textit{t} + \textit{x})(\cos(i\beta) + i\sin(i\beta)) =

= [\textit{t}\cdot\cos(i\beta) + x\cdot i\sin(i\beta)] + [t\cdot i\sin(i\beta) + x\cdot\cos(i\beta)] =

= $\underbrace{[t\cdot\cosh(\beta) + x\cdot \sinh(\beta)]}_{t'}$ + $\underbrace{[-t\cdot \sinh(\beta) + x\cdot\cosh(\beta)]}_{x'}$

(\textit{t} + \textit{x})\textit{e}^{-\beta} = t' + x'

\textit{e}^{-\beta} = $\dfrac{t' + x'}{t + x}$

 
 
 
 Re: формула из СТО (из преобразований Лоренца)
Сообщение11.01.2021, 23:37 
А при чем тут, собственно, СТО?

 
 
 
 Re: формула из СТО (из преобразований Лоренца)
Сообщение11.01.2021, 23:48 
Pphantom, это преобразование координат из одной ИСО в другую, двигающуюся относительно первой. это преобразования Лоренца в пространстве Минковского - это что, не СТО? а я в СТО это искал... подскажите в какой теории это поискать

 
 
 
 Re: формула из СТО (из преобразований Лоренца)
Сообщение12.01.2021, 00:14 
Аватара пользователя
Kulkurul в сообщении #1500373 писал(а):
вывел красивую формулу в специальной теории относительности, но нигде ни чего подобного не нашёл.


У вас ошибка в знаке в четвертой строке вывода. Может еще в этом проблема.

Kulkurul в сообщении #1500373 писал(а):
какой вообще смысл в том, что суммы координат в разных ИСО пропорциональны скорости?


Видите ли, если вы считаете, что за этими формулами скрывается смысл, то вы верите в Бога. Кто еще мог вложить смысл в эти формулы?
В физике считают, что это закон природы.

(Оффтоп)

Kulkurul в сообщении #1500373 писал(а):
я инженер по отоплению и вентиляции


У вас какой сейчас график для подачи тепла? 150/70?

 
 
 
 Re: формула из СТО (из преобразований Лоренца)
Сообщение12.01.2021, 00:16 
Kulkurul в сообщении #1500375 писал(а):
это преобразование координат из одной ИСО в другую, двигающуюся относительно первой. это преобразования Лоренца в пространстве Минковского - это что, не СТО?
Вообще-то это математические упражнения с выражениями, похожими на преобразования Лоренца. Именно похожими - по сравнению с матрицей поворота Вика один минус лишний (ну или, ежели угодно, еще как минимум одного не хватает, причем не того, который пропал из-за ошибки).

Но дело даже не в этом. Физический смысл происходящего в чем?

-- 12.01.2021, 00:23 --

И, да, вся деятельность, если убрать из нее лишние действия и ошибки, сведется к следующему:$$ \sh \beta + \ch \beta = \frac{e^\beta - e^{-\beta}}{2} + \frac{e^\beta + e^{-\beta}}{2} = e^\beta.$$

 
 
 
 Re: формула из СТО (из преобразований Лоренца)
Сообщение12.01.2021, 08:41 
это не ошибка, а описка, вывод формулы-то правильный
и формула действительно работает
возьмём две ИСО - покоящуюся (t, x) и движущиеся со скоростью $u = 0,5с$ (t', x')
пусть координаты события в неподвижной ИСО $t = 8; x = 5$
тогда координаты события в движущейся ИСО:
$\gamma$ = $\dfrac{1}{\sqrt{1 - u^2}} = $\dfrac{1}{\sqrt{1 - 0,5^2}} = 1,1547 $

$t' = $\gamma$(t - ux) = 1,1547(8 - 0,5$\cdot$5) = 6,3509

$x' = $\gamma$(x - ut) = 1,1547(5 - 0,5$\cdot$8) = 1,1547$

проверяем формулу:

$\beta$ = atanh(u) = atanh(0,5) = 0,5493

$e^{-0,5493} = \dfrac{6,3509 - 1,1547}{8 - 5} $

$0,5774 = 0,5774$

дак что, такой формулы нигде нет? ура, я открыл новую формулу :D куда обратится за нобелевской премией? :D

 
 
 
 Re: формула из СТО (из преобразований Лоренца)
Сообщение12.01.2021, 09:00 
Ну, очевидно, что если \(x\) есть линейная однородная комбинация \(x'\) и \(t'\), и \(t\) есть линейная однородная комбинация \(x'\) и \(t'\), то линейная однородная комбинация \(x\) и \(t\) — даже абсолютно бессмысленная — тоже будет линейной однородной комбинацией \(x'\) и \(t'\). А если учесть инвариантность скорости света, то понятно, что если коэффициенты перед \(x\) и \(t\) были одинаковыми по модулю, то и перед \(x'\) и \(t'\) они будут одинаковыми по модулю. Что в итоге? Ничего, формула как была бессмысленной, так и осталась.

 
 
 
 Re: формула из СТО (из преобразований Лоренца)
Сообщение12.01.2021, 09:44 
Аватара пользователя
Kulkurul в сообщении #1500391 писал(а):


$e^{-0,5493} = \dfrac{6,3509 - 1,1547}{8 - 5} $



Вы решили по скоморошничать на форуме? Специально пишем формулу неправильно (Результат = 1,7204). А итог поставлен, как по правильной формуле.
Может вы цирк разыгрывать не будете? Если у вас есть, что сказать, то говорите. Лично я с удовольствием почитаю. А если нет, то это мой последний вам пост.

 
 
 
 Posted automatically
Сообщение12.01.2021, 13:13 
 i  Тема перемещена из форума «Физика» в форум «Пургаторий (Ф)»
Причина переноса: физики так и не нашлось.

 
 
 [ Сообщений: 9 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group