2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Посмотреть правила форума



Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: Разностная схема для уравнения переноса
Сообщение18.12.2020, 19:03 


16/12/20
19
TOTAL в сообщении #1497019 писал(а):
goolqwe в сообщении #1496984 писал(а):
$\frac{U_m^{n+1}-U_m^n}{\tau}-\frac{U_m^n-U_{m-1}^n}{h}\cdotс=\varphi_m^n
$U_m^0=\psi_m$
разрешив получим:
$U_m^{n+1}=\left(1+c\cdot r\right)U_m^n-c\cdot rU_{m-1}^n-\tau\varphi_m^n$
Спектральная оценка дает r от 0 до 1.
$\tau=rh\ $
C = -0.4
Ну вот так примерно понятно?

Понятно, что по сто раз минусы пишете и ошибаетесь.

$\frac{U_m^{n+1}+U_m^n}{\tau}+C\frac{U_m^n-U_{m-1}^n}{h}=\varphi_{m-1/2}^{n+1/2}, \;\; C>0$
$U_m^{n+1}=\left(1-C\frac{\tau}{h}\right)U_m^n+C\frac{\tau}{h}\cdot U_{m-1}^n+\tau\varphi_{m-1/2}^{n+1/2}$
$U_m^{n+1}=\left(1-C\frac{\tau}{h}\right)U_m^n+C\frac{\tau}{h}\cdot U_{m-1}^n+\tau\varphi(x_m-C\frac{\tau}{2}, t_n+\frac{\tau}{2})$

Действительно, спасибо за замечание, я из С хотел вынести минус и запутал себя сам, видимо, теперь графики в порядке на всех слоях.
Пример на последнем:
Изображение

-- 18.12.2020, 19:09 --

TOTAL в сообщении #1497019 писал(а):
goolqwe в сообщении #1496984 писал(а):
$\frac{U_m^{n+1}-U_m^n}{\tau}-\frac{U_m^n-U_{m-1}^n}{h}\cdotс=\varphi_m^n
$U_m^0=\psi_m$
разрешив получим:
$U_m^{n+1}=\left(1+c\cdot r\right)U_m^n-c\cdot rU_{m-1}^n-\tau\varphi_m^n$
Спектральная оценка дает r от 0 до 1.
$\tau=rh\ $
C = -0.4
Ну вот так примерно понятно?

Понятно, что по сто раз минусы пишете и ошибаетесь.

$\frac{U_m^{n+1}+U_m^n}{\tau}+C\frac{U_m^n-U_{m-1}^n}{h}=\varphi_{m-1/2}^{n+1/2}, \;\; C>0$
$U_m^{n+1}=\left(1-C\frac{\tau}{h}\right)U_m^n+C\frac{\tau}{h}\cdot U_{m-1}^n+\tau\varphi_{m-1/2}^{n+1/2}$
$U_m^{n+1}=\left(1-C\frac{\tau}{h}\right)U_m^n+C\frac{\tau}{h}\cdot U_{m-1}^n+\tau\varphi(x_m-C\frac{\tau}{2}, t_n+\frac{\tau}{2})$

А почему вы написали индекс m-1/2 у $\varphi_{m-1/2}^{n+1/2}$? откуда берется -1/2 и + 1/2?
Беря значения по середине, как-то влияет на точность?

 Профиль  
                  
 
 Re: Разностная схема для уравнения переноса
Сообщение19.12.2020, 07:08 
Заслуженный участник
Аватара пользователя


23/08/07
5501
Нов-ск
goolqwe в сообщении #1497090 писал(а):
А почему вы написали индекс m-1/2 у $\varphi_{m-1/2}^{n+1/2}$? откуда берется -1/2 и + 1/2?
Беря значения по середине, как-то влияет на точность?

$U_m^{n+1}=\left(1-C\frac{\tau}{h}\right)U_m^n+C\frac{\tau}{h}\cdot U_{m-1}^n+\tau\varphi(x_m-C\frac{\tau}{2}, t_n+\frac{\tau}{2})$

Просто попробуйте, чтобы увидеть влияние на результат.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 17 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group