В сосуде находится

моля идеального газа при температуре

°C. Газ расширяется по политропе с показателем

от объема

л до объема

л. Определите работу, совершаемую газом.
Если газ расширяется по политропе, то, видимо, это политропный процесс. Есть формула для нахождения работы политропного процесса:

. Для нахождения работы по этой формуле нам не хватает давления в начале и в конце процесса. Давление в начале процесса мы найти можем по уравнению состояния идеального газа:

. Его можно подставить в уравнение работы. Вот как найти давление в конце процесса я не очень понимаю. Температура нам уже не дана. Тут, видимо, нужно как-то использовать свойство политропного процесса:

, тогда

. Получается, что работа равна нулю, хотя на деле она нулю не равна. Вот с этого момента я не понимаю, как дальше решить эту задачу.