Цитата:
Let
be a universe of objects and let
be a set of properties that the objects may or may not have. For any
let
equal the number of objects in
that have the properties in
and possibly others, and
-- the number of objects in
that have the properties in
and no others. Show the number of objects in
with none of the properties is
.
Proof(?) with holes:
Suppose
. Then some of the
s are
etc. There are
such
s. Generally, if
, then there are
objects all of whose properties are in
meaning
. Summing both sides of the expression in
above, we have
Since removing objects with
properties also removes objects with
properties(think of overlapping sets
where
can also be in
), we can replace
s in the expression
above with
s as follows:
Note that the number of objects in
with none of the properties is
meaning the number of times
includes each object in
is
when the object has none of the properties and
when the object has at least one property. If we can say the same thing about the expression
above, then we can use it instead of
.
Now assume an object in
contains none of the properties in
. Then
meaning
. [Here we want to be able to say "the expression
above counts an object with no properties in
only once". Exactly how, though?].
Suppose an object in
contains
properties in
where
. Then
Now
. Thus the expression
above doesn't even count an object with properties in
.
----------------------
У данного док-ва по меньшей мере три недостатка. Первый выделен фиолетовым цветом. С одной стороны кажется, что
, но с другой -- у выражения нет индексов. Другой вопрос задан непосредственно за фиолетовым выражением. Третьи недостаток выделен коричневым цветом. Здесь была попытка использовать
, но индексы в коричневой части не согласуются. Как это можно исправить?