Характеристика "все числа меньше
", это не характеристика вовсе, по понятной причине. Хотелось бы про числа с некими интересными характеристиками почитать.
А откуда числа узнают, что они интересные?
Я же писал, разница в том, что доказательства утверждений о конечном количестве каких то чисел, с какими то характеристиками неинтересное (и очень простое) -
1) чисел, меньших чем число Грэма - лишь конечное количество (это вообще не доказательство), или
2) троек простых чисел, на интервале не более чем
, лишь конечное количество (
, и тройка
, больше таких троек нет) .
А вот к примеру, доказательство следующего утверждения было бы интересным -
3) простых чисел-триплетов (троек простых, на интервале
, например
) лишь конечное количество. Потому что их
много в любом случае.
Неужели трудно понять, что я хочу донести?
UPD: Доказательства из области теории чисел, утверждающие что неких чисел (с какими то характеристиками) 1) бесконечно много , 2) либо их очень мало - есть.
Но доказательства утверждений из теории чисел, 3) что неких чисел (с какими то характеристиками) -
лишь конечное количество , но их очень много - я вообще таких не видел!
-- Ср окт 28, 2020 15:59:32 --Единственное доказательство, которое я встречал , и претендовавшее на это, было частичное доказательство Виноградова, слабой (тернарной ) гипотезы Гольдбаха -
"что любое достаточно большое нечётное число может быть представлено в виде суммы трёх простых".
Это можно было бы переформулировать так - "нечётных чисел, которых нельзя представить в виде суммы трёх простых - лишь конечное количество".
Но, как оказалось их нет вовсе (доказано Харальдом Гельфготтом). В очередной раз, теория чисел выдала результат - что конечное количество неких чисел с какими то характеристиками, либо очень мало, либо их и вовсе нет, как в данном случае.
Я думал, ну может быть, конечное количество из области теории чисел (т.е. натуральных) - будет например, численность простых-чисел-близнецов (пар на интервале
), или простых-триплетов, или простых-квадруплетов, или простых-квинтуплетов, и т.д. Но это не то что не доказано, а как оказалось, существует гипотеза (Харди-Литтлвуда), что любых всех этих подобных кортежей, и вовсе бесконечное количество..
1) либо нет чего то, 2) либо очень малое количество, 3) либо бесконечное количество .
Есть чего то в математике из теории чисел доказанное - 4) таких-то чисел
очень много, но их конечное количество?