2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Подготовка
Сообщение14.10.2020, 15:38 
Let be $\alpha,\beta,\gamma$ angles of a triangle $ABC$ and point $D$ on side $AB$.
i) Determine the maximum of function:
$f(\varphi)=\sin\varphi\cdot\sin(\gamma-\varphi)\quad \left(0\leq\varphi\leq\frac{\gamma}{2}\right).$
ii) If it's $0<\sin\alpha\sin\beta\leq max(f(\varphi)),$ prove that there is a point $D$ on side $AB$ so that $CD$ geometric mean proportional of lines $AD$ and $BD$ ( e.g. $|CD|^{2}=|AD|\cdot|BD|$ ) and converse.

 
 
 
 Re: Подготовка
Сообщение17.11.2020, 14:17 
a) Note that $f(x)=f(\gamma-x)$ so we can also look at $x\in [0,\gamma]$. We have $f(0)=f(\gamma)=0$ and $2f(x)=2\sin x \sin (\gamma-x)=\cos(2x-\gamma)-\cos \gamma=2\cos^2 (\gamma/2 -x)-1-\cos \gamma$.
We have $\gamma/2-x\in [0,\gamma/2]$ and the form is obviously maximal if $\gamma/2-x=0 \implies x=\gamma/2$. The maximal value is $\sin^2(\gamma/2)$.

P.S. I hope this part is ok!?

 
 
 
 Re: Подготовка
Сообщение17.11.2020, 18:06 
Аватара пользователя
Consider the triangle (angles $\alpha = A, \ldots, \gamma = C$)
$$
\begin{tikzpicture}
\coordinate [left] (A) at (0, 0)
\coordinate [above] (B) at (2, 2)
\coordinate [right] (C) at (3, 0)
\coordinate [left] (D) at (0.667, 0.667)
\draw (A) node[left] {$A$} -- (B) node[above] {$B$} -- (C) node[right] {$C$} -- cycle;
\path (A) -- (D) node [pos=0.5, left] {$p$}
\path (D) -- (B) node [pos=0.5, left] {$q$}
\node[left] at (D) {$D$}
\draw (C)--(D) node [pos=0.5, above] {$d$}
\end{tikzpicture}
$$

Let $\delta$ be the angle $ADC$. Using the sine theorem
$$
\frac{d}{\sin \alpha} = \frac{AC}{\sin \delta}, \qquad \frac{d}{\cos \alpha} = \frac{BC}{\sin \delta}
$$
and multiplying both
$$
\frac{d^2}{\sin \alpha \sin \beta} = \frac{AC \cdot BC}{\sin^2 \delta}
$$

On the other hand, let $\gamma_1$ be the angle $ACD$ so $\gamma_2$ is defined using $\gamma_1 + \gamma_2 = \gamma$. We use the same trick again
$$
\frac{p}{\sin \gamma_1} = \frac{AC}{\sin \delta}, \qquad \frac{q}{\sin \gamma_2} = \frac{BC}{\sin \delta}
$$
now multiplying both and inserting earlier equations yields
$$
\frac{d^2}{\sin \alpha \sin \beta}  = \frac{AC \cdot BC}{\sin^2 \delta} = \frac{pq}{\sin \gamma_1 \sin \gamma_2}
$$

So if $\sin \alpha \sin \beta$ exceeds the maximal value of $\sin \gamma_1 \sin \gamma_2$, we are in trouble :) And what is that maximal value is a completely separate question.

We can make an observation. The value of $d$ is between $\min$ and $\max$ of the pair $AC, BC$. So, if $d \geqslant \min(AC, BC) > (p + q)/2 = AB/2 \geqslant \sqrt{pq}$, there are no $D$ points such that $d = \sqrt{pq}$. Consider $AC = \min(AC, BC)$ for certainty. We have
$$
\frac{AC}{\sin \beta} = \frac{BC}{\sin \alpha} = \frac{AB}{\sin \gamma},
$$
and if $AC/AB > 1/2$, we have $\sin \beta / \sin \gamma > 1/2$. Generally speaking,
$$
\min(\sin \alpha, \sin \beta) \leqslant \frac{\sin \gamma}{2}
$$
is an additional constraint. Is it automatically fulfilled? We have
$$
\min(\sin \alpha, \sin \beta) \leqslant \sin \frac{\gamma}{2} \cos \frac{\gamma}{2}
$$
and $\sin (\gamma/2) \geqslant \sqrt{\sin \alpha \sin \beta} \geqslant \min(\sin \alpha, \sin \beta)$,
but here we have a $\cos$ in the right side, so it occurs to be a stronger constraint than presented!

 
 
 
 Re: Подготовка
Сообщение17.11.2020, 18:07 
rsoldo в сообщении #1492799 писал(а):
a) Note that $f(x)=f(\gamma-x)$ so we can also look at $x\in [0,\gamma]$. We have $f(0)=f(\gamma)=0$ and $2f(x)=2\sin x \sin (\gamma-x)=\cos(2x-\gamma)-\cos \gamma=2\cos^2 (\gamma/2 -x)-1-\cos \gamma$.
We have $\gamma/2-x\in [0,\gamma/2]$ and the form is obviously maximal if $\gamma/2-x=0 \implies x=\gamma/2$. The maximal value is $\sin^2(\gamma/2)$.

P.S. I hope this part is ok!?

It is much easier. $f(\varphi)=\dfrac{\cos(\gamma-2\varphi)-\cos\gamma}2$ and maximum of $\cos(\gamma-2\varphi)$ is at $\varphi=\dfrac\gamma2$.

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group