2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 One competition in Macedonia 1987 ( ex YUG )
Сообщение01.10.2020, 12:55 
Prove that for any choice of the sign $+$ or $-$ in the sum$$1\pm\frac{1}{2}\pm\frac{1}{3}\pm\ldots\pm\frac{1}{11}\pm\frac{1}{12}$$we can never get $0$.

 
 
 
 Re: One competition in Macedonia 1987 ( ex YUG )
Сообщение01.10.2020, 13:09 
I suppose, we can use that there is $\pm 1/2^3$ in the sum. So, we can't obtain an integer as the value of sum (not only zero).

 
 
 
 Re: One competition in Macedonia 1987 ( ex YUG )
Сообщение01.10.2020, 13:23 
Аватара пользователя
Допустим, равенство возможно. Тогда
$\pm 1\pm\frac{1}{2}\pm\ldots\pm\frac{1}{10}\pm\frac{1}{12}=\frac{1}{11}$
В левой части приведём дроби к общему знаменателю и сложим их. Знаменатель должен быть в $11$ раз больше числителя, но он не содержит множителя $11$.

 
 
 
 Re: One competition in Macedonia 1987 ( ex YUG )
Сообщение01.10.2020, 13:26 
Аватара пользователя
We can also use $\frac{1}{11}$, $\frac{1}{9}$ or $\frac{1}{7}$ instead - take any fraction s.t. it's denominator doesn't divide lcm of others' denominators, multiply all fractions by this lcm, and all but one fractions become integers, so even after this multiplication sum isn't integer.

 
 
 
 Re: One competition in Macedonia 1987 ( ex YUG )
Сообщение01.10.2020, 13:33 
This is the same idea. We have some prime number $p$ which divides (in its maximal exponent) only one of the denominators. Then the sum cannot be integer. One can be used any $p \in \{2,3,5,7,11\}$.

Upd. $p=5$ doesn't work because we have two denominators dividing by $5$.

Upd-2. In fact, $p=5$ works: it suffices to add $\pm 1/5$ and $\pm 1/10$.

 
 
 [ Сообщений: 5 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group