2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 Классификация конечных множеств
Сообщение25.09.2020, 19:03 


25/02/10
33
Всем доброго!
Прошу подсказать возможные подходы к решению следующей задачи классификации.
Имеется набор конечных множеств. Элементы множества обладают одинаковым набором признаков, но количество элементов в разных множествах может отличаться.
Имеется тестовая выборка, в которой отмечено содержит ли множество "интересные" элементы или нет.
Необходимо построить алгоритм, позволяющий оценить наличие "интересного" элемента в произвольном множестве.

 Профиль  
                  
 
 Re: Классификация конечных множеств
Сообщение25.09.2020, 22:12 
Заслуженный участник


27/04/09
28128
Anatoly в сообщении #1484602 писал(а):
Имеется набор конечных множеств.
Не пересекающихся?

И по-моему задача не очень-то поставлена в текущей формулировке. Я за несколько чтений не смог довести её до понятного состояния. Если элементы множества обладают полностью одинаковыми признаками (или нет?), то как мы их различаем? Можем ли мы определить по элементу, из какого он множества (если это надо, и надо ли это)? В тестовой выборке просто говорится, есть в множестве интересные элементы, или говорится их число в нём, или они явно перечисляются? (Или хотя бы некоторые из них?) Известно ли, как интересность элементов вообще может быть связана с их признаками? Что конкретно идёт на вход алгоритма, полностью, кроме интересующего множества (видимо, скорее «имени» множества?)?

Сильно удивлюсь, если специалисты по распознаванию образов / машинному обучению поймут текущую постановку единственным образом с полпинка; но если так будет, прошу прощения. Если нет, то может даже я что-то смогу предложить (а может и нет — заранее неизвестно).

 Профиль  
                  
 
 Re: Классификация конечных множеств
Сообщение25.09.2020, 22:20 
Заслуженный участник
Аватара пользователя


16/07/14
5169
Москва
Да вроде бы однозначно понимается: есть семейство множеств векторов, и нужно по множеству определить, есть ли в нем хотя бы один хороший.

Для нейронок тут прямо напрашивается пулинг (считаем какое-то преобразование для каждого элемента, потом берём максимум или сумму, и сигмоиду). Для деревьев этот метод тоже должен сработать, но я не знаю, умеют ли какие-то библиотеки так из коробки.

 Профиль  
                  
 
 Re: Классификация конечных множеств
Сообщение26.09.2020, 01:08 


25/02/10
33
mihaild в сообщении #1484639 писал(а):
Да вроде бы однозначно понимается: есть семейство множеств векторов, и нужно по множеству определить, есть ли в нем хотя бы один хороший.

Для нейронок тут прямо напрашивается пулинг (считаем какое-то преобразование для каждого элемента, потом берём максимум или сумму, и сигмоиду). Для деревьев этот метод тоже должен сработать, но я не знаю, умеют ли какие-то библиотеки так из коробки.


Да, спасибо за более компактную формулировку. Не могли бы Вы подсказать ссылку на описанную методику или хотя бы формальное определение к какому классу принадлежит данная задача. По всей видимости такая постановка не нова.

 Профиль  
                  
 
 Re: Классификация конечных множеств
Сообщение26.09.2020, 08:13 


12/07/15
1737
Обычная бинарная классификация.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 5 ] 

Модераторы: maxal, Toucan, PAV, Karan, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group