2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему
 
 ЭМ маятник с затуханием
Сообщение19.08.2020, 20:43 


21/07/20
255
Проволочный контур может перемещаться без трения поступательно вдоль оси Х в постоянном магнитном поле, при этом магнитный поток этого поля через контур меняется линейно: $\ d\Phi / dx=\operatorname{const}$ . Масса контура $\ m$ , его сопротивление $\ R$ , индуктивность $\ L$. В начальный момент времени ток в контуре равен нулю и контур покоился. Затем контуру сообщили начальную скорость $\upsilon_0$ . На какое расстояние сместится контур за время движения до полной остановки?

 Профиль  
                  
 
 Re: ЭМ маятник с затуханием
Сообщение19.08.2020, 23:26 
Заслуженный участник


20/04/10
2002
Закон Ньютона $m \dot{v}_x(t)=I(t)\partial_x\Phi$ и закон Кирхгофа $ v_x(t)\partial_x\Phi+L\dot{I}(t)+I(t)R=0$ приводят к уравнению затухающих колебаний
\begin{gather}\nonumber
\ddot{v}_x(t)+\frac{R}{L}\dot{v}_x(t)+\frac{(\partial_x\Phi)^2}{mL}v_x(t)=0.
\end{gather}
Начальные данные $v_x(0)=v_0, \dot{v}_x(0)=0$
Поскольку по условию $\partial_x\Phi=\operatorname{const}$, решение ищется легко. Далее интегрируем $v_x(t)$ в пределах от нуля до бесконечности и получаем ответ
$$\ell=\frac{m v_0 R}{(\partial_x\Phi)^2}.$$
Забавно что в ответ не вошла индуктивность.

 Профиль  
                  
 
 Re: ЭМ маятник с затуханием
Сообщение20.08.2020, 06:54 


21/07/20
255
lel0lel в сообщении #1479924 писал(а):
Забавно что в ответ не вошла индуктивность.

Тоже обратил на это внимание, получив такой же ответ, но для интриги задал значение индуктивности в условии.

 Профиль  
                  
 
 Re: ЭМ маятник с затуханием
Сообщение20.08.2020, 07:54 
Заслуженный участник


21/09/15
998
Интересно, что дифференциальное уравнение для $v_x$ составлять и решать не обязательно.
Можно сразу проинтегрировать от нуля до бесконечности исходные уравнения движения и Кирхгофа.
И, кстати, видно, что индуктивность не вошла в ответ из-за условия нулевого начального тока

 Профиль  
                  
 
 Re: ЭМ маятник с затуханием
Сообщение20.08.2020, 08:23 


21/07/20
255
AnatolyBa в сообщении #1479939 писал(а):
Интересно, что дифференциальное уравнение для $v_x$ составлять и решать не обязательно.
Можно сразу проинтегрировать от нуля до бесконечности исходные уравнения движения и Кирхгофа.
И, кстати, видно, что индуктивность не вошла в ответ из-за условия нулевого начального тока

AnatolyBa, спасибо! Я такое простое решение и не заметил.

 Профиль  
                  
 
 Re: ЭМ маятник с затуханием
Сообщение20.08.2020, 11:36 
Заслуженный участник


05/02/11
1290
Москва
Умножим обе части 2-го уравнения на $I$; с учётом 1-го уравнения получаем$$mv\dot{v}+LI\dot{I}+RI^2=0,$$ или$$\frac{dW}{dt}+RI^2=0,\quad W=m\frac{v^2}2+L\frac{I^2}2$$То есть, вроде бы получаем, что вне зависимости от конкретного вида функции $\Phi(x)$ можно продолжать пользоваться величиной $W$ в качестве меры полной энергии, как это было и в отсутствие внешнего магнитного поля.

 Профиль  
                  
 
 Re: ЭМ маятник с затуханием
Сообщение20.08.2020, 12:31 


21/07/20
255
dovlato в сообщении #1479958 писал(а):
То есть, вроде бы получаем, что вне зависимости от конкретного вида функции $\Phi(x)$ можно продолжать пользоваться величиной $W$ в качестве меры полной энергии, как это было и в отсутствие внешнего магнитного поля.

Уважаемый dovlato , именно об этом я писал при обсуждении вашей задачи post1479541.html#p1479541

 Профиль  
                  
 
 Re: ЭМ маятник с затуханием
Сообщение20.08.2020, 18:19 
Заслуженный участник


05/02/11
1290
Москва
Прошу прощения, я не сразу вник в текст Ignatovich.
Полученное собственными руками легче воспринимать.

 Профиль  
                  
 
 Re: ЭМ маятник с затуханием
Сообщение20.08.2020, 22:05 
Заслуженный участник


20/04/10
2002
Предлагаю немного изменить условие задачи, она от этого станет содержательней. Пусть, как и ранее, в начальный момент контур покоится во внешнем поле и тока в нём нет. В интервале времени от $0$ до $\tau<\infty$ на контур действует сила $F_x(t)$. Найти перемещение контура $\Delta x(t\to\infty)$. Считать что излучения нет и $R>0$.

При решении этой модификации задачи будет очень полезно замечание AnatolyBa, что интегрировать можно сами уравнения.

 Профиль  
                  
 
 Re: ЭМ маятник с затуханием
Сообщение21.08.2020, 07:20 


21/07/20
255
lel0lel в сообщении #1480043 писал(а):
При решении этой модификации задачи будет очень полезно замечание AnatolyBa, что интегрировать можно сами уравнения.

Красивое развитие задачи. Ответ, как и в исходной задаче, но вместо начального импульса $m \upsilon_0$ стоит импульс силы $$\int\limits_{0}^{\tau}F_x dt$$

 Профиль  
                  
 
 Re: ЭМ маятник с затуханием
Сообщение22.08.2020, 00:09 
Заслуженный участник


05/02/11
1290
Москва
В задачах Ignatovich и lel0lel получается решаемое ДУ при $\Phi(x)$, удовлетворяющих ДУ $$\Phi_{xx}-\Phi_x^2=a,\quad a=\operatorname{const}$$ Его решение $\Phi=\ln|C_1-C_2x|+ax$

 Профиль  
                  
 
 Re: ЭМ маятник с затуханием
Сообщение22.08.2020, 13:50 
Заслуженный участник


20/04/10
2002
Получается диффур
\begin{gather}\nonumber
\ddot{v}_x+\left(\frac{R}{L}-\frac{\partial_{x,x}\Phi}{\partial_x \Phi}v_{x}\right)\dot{v}_x+\frac{(\partial_x\Phi)^2}{m L}v_x=0
\end{gather}.
Для координаты в общем случае получим нелинейное уравнение третьего порядка. Разве условие
dovlato в сообщении #1480244 писал(а):
$$\Phi_{xx}-\Phi_x^2=a,\quad a=\operatorname{const}$$

позволяет его решить?

dovlato в сообщении #1480244 писал(а):
Его решение $\Phi=\ln|C_1-C_2x|+ax$

Это тоже по-моему требует проверки.

 Профиль  
                  
 
 Re: ЭМ маятник с затуханием
Сообщение22.08.2020, 17:26 
Заслуженный участник


05/02/11
1290
Москва
Прошу прощения, ошибся. Хотелось посмотреть - когда вообще уравнение решается без спецфункций. Ведь требование на поле наложено довольно сильное. Ещё посижу, подумаю; если что-то интересное будет, напишу.
Да, действительно получается с той левой частью, а справа $\frac1{L}\left(R\frac{f-m\dot{v}}{\Phi_x}-v\Phi_x\right).$
Если силa $f$ потенциальная и зависит только от координаты $x$, то есть $f(x)=-dU/dx$, то получим уравнение энергетического баланса $$\frac{d}{dt}\left(mv^2/2+LI^2/2+U\right)+RI^2=0,$$ в которое произвольное стационарное внешнее магнитное поле не входит.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 13 ] 

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Утундрий


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group