2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2
 
 Re: комбинаторные тождества
Сообщение12.06.2018, 23:32 
Модератор
Аватара пользователя


11/01/06
5328
Тождество 10. Для целых чисел $n>m\geq 0$ докажите, что
$$\sum_{k=0}^n (-1)^k\binom{2n+1}{n-k} (2k+1)^{2m+1} = 0.$$

 Профиль  
                  
 
 Re: комбинаторные тождества
Сообщение13.06.2018, 06:45 
Заслуженный участник


16/02/13
3248
Владивосток
А кто есть $m$? Произвольное число?

 Профиль  
                  
 
 Re: комбинаторные тождества
Сообщение13.06.2018, 10:08 
Заслуженный участник
Аватара пользователя


09/09/14
5549
iifat в сообщении #1319522 писал(а):
А кто есть $m$? Произвольное число?
Думаю, что целое неотрицательное. Исхожу из этого:
maxal в сообщении #1319484 писал(а):
Для целых чисел $n>m\geq 0$

 Профиль  
                  
 
 Re: комбинаторные тождества
Сообщение14.06.2018, 22:15 
Модератор
Аватара пользователя


11/01/06
5328
maxal в сообщении #333354 писал(а):
Тождество 4:
$$\sum_{k=1}^n \binom{n}{k}^2 H_k = \binom{2n}{n}(2H_n-H_{2n}),$$
где $H_m$ - гармонические числа.

С виду кажется очень похожим:

Тождество 11. Для $n\geq 1$, докажите:
$$\sum_{k=1}^n (-1)^{n-k}\binom{n}{k}2^k H_k = 2H_n-H_{\lfloor n/2\rfloor}.$$

(Crux Mathematicorum, problem 3886)

 Профиль  
                  
 
 Re: комбинаторные тождества
Сообщение15.06.2018, 04:37 


21/05/16
1822
Аделаида
maxal в сообщении #334374 писал(а):
caxap
Подсказка для 4-го:
$$H_k = \int_0^1 \frac{1-x^k}{1-x}\,dx$$
Полезно также вспомнить доказательство тождества:
$$\sum_{k=0}^n \binom{n}{k}^2 = \binom{2n}{n}$$
и попробовать его скомбинировать с вышеприведённым интегралом.

Полное решение доступно по ссылке.

А откуда у вас появляется y?

 Профиль  
                  
 
 Re: комбинаторные тождества
Сообщение15.06.2018, 15:56 
Модератор
Аватара пользователя


11/01/06
5328
kotenok gav в сообщении #1320066 писал(а):
А откуда у вас появляется y?

Как появляется, так и исчезает - через оператор $[y^n]$ взятия коэффициента при $y^n$.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 21 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group