2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Квантования э/м поля
Сообщение15.08.2020, 22:48 
Здравствуйте! Мне хотелось бы уточнить кое-что, возможно вопрос странный. Когда выводят оператор фотонного поля каноническим всегда оговариваются о том, что для разложения векторного потенциала по плоским волнам необходимо что бы компоненты волнового вектора имели дискретные значения, однако же в конечном итоге об этом как то умалчивают. Так вот вопрос следующий. Обязательно ли компоненты волнового вектора в резонаторе имеют дискретный спектр в полевом операторе, или он может быть непрерывным, например если объем резонатора много больше куба длины волны?

 
 
 
 Re: Квантования э/м поля
Сообщение15.08.2020, 23:19 
Аватара пользователя
Это просто быстрый способ прийти к правильным уравнениям, не сломав по пути голову о теорию распределений.

 
 
 
 Re: Квантования э/м поля
Сообщение15.08.2020, 23:22 
Т.е., допустим, я могу использовать использовать непрерывные волновые вектора при усреднении поля по когерентному состоянию. Там получается плоская волна(в случае одномодового оператора), с любым волновым вектором, несмотря на то что объем конечный?

-- 15.08.2020, 23:25 --

Просто у меня странная история выходит. Я пытался посчитать эффективный спиновый гамильтониан незаряженного фермиона в резонаторе с плоской волной, и усреднял напряженность по когерентному состоянию, получал плоскую волну, затем в свою очередь искал матричные элементы оператора возмущения по координатным волновым функциям с учетом вырождения(https://mipt.ru/education/chairs/fpfkt/ ... k-2017.pdf, страница 23).И если считать волновые вектора дискретными, то все диагональные элементы убивались в ноль, и гамильтониан зануялется, а если непрерывными то нет. Отсюда у меня множество вопросов возникло, я не понимаю с чем связано различие результатов.

 
 
 [ Сообщений: 3 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group