Kornelij писал(а):
Почему смешная? Если каждую матрицу в произведении заменить на эту мажоранту, то произведение превратится в степень этой матрицы, а если ее представить в виде
, где у диагональной матрицы
на диагонали стоят собственные числа мажоранты, то степень мажоранты превратится в
, где у диагональной матрицы
на диагонали стоят степени собственных чисел мажоранты, т.е. исходный ряд превращается в сумму геометрической прогрессии (точнее двух).
Ясно. Теперь вижу, что Вы используете разложение Жордана, это хороший путь, я просто изначально думал о другой идее. Тогда эта "мажоранта" всем хороша, единственный её недостаток - слишком грубо тут оценивает матрицу. Если смотреть исходную матрицу, можно заметить, что сумма её собственных чисел, которая равна сумме диагональных элементов, не превосходит 1, и равна 1 только на границе - при
и
либо
. Так что подставить
в матрицу может, и хорошая идея, но когда подставляете
, то в разные элементы матрицы подставляете разные числа, из-за чего результат и портится
Kornelij писал(а):
А что даст оценка собственных чисел всех матриц
? Если все они меньше единицы, то как после этого обосновать сходимость ряда? А норма для чего здесь может пригодится? И для чего нужны матрицы
?
Оценка собственных чисел матрицы
сама по себе ничего не даст, тут я ошибся (если конечно не выписывать целиком разложение Жордана). Что касается остального, я изначально рассматривал элемент под знаком суммы как квадратичную форму, для которой справедлива оценка:
, где
- операторная норма со свойством мультипликативности, то есть для неё в свою очередь справедлива оценка:
для любых матриц
. Такие нормы бывают разные, для евклидова пространства например, она равна:
, где
- максимальное собственное число матрицы
Но я не убеждён, что эта идея подойдёт сама по себе, здесь возможно придётся собрать вместе несколько идей - Вашу с жорданом, и эту, надо пробовать